miR-452-3p inhibited osteoblast differentiation by targeting Smad4
miR-452-3p
0301 basic medicine
03 medical and health sciences
Osteoblast differentiation
QH301-705.5
R
Osteoporosis
Medicine
Biology (General)
Smad4
MC3T3-E1
Biochemistry
DOI:
10.7717/peerj.12228
Publication Date:
2021-09-28T09:03:45Z
AUTHORS (7)
ABSTRACT
Osteoblast differentiation is a complex process that is essential for normal bone formation. A growing number of studies have shown that microRNAs (miRNAs) are key regulators in a variety of physiological and pathological processes, including osteogenesis. In this study, BMP2 was used to induce MC3T3-E1 cells to construct osteoblast differentiation cell model. Then, we investigated the effect of miR-452-3p on osteoblast differentiation and the related molecular mechanism by RT-PCR analysis, Western blot analysis, ALP activity, and Alizarin Red Staining. We found that miR-452-3p was significantly downregulated in osteoblast differentiation. Overexpression miR-452-3p (miR-452-3p mimic) significantly inhibited the expression of osteoblast marker genes RUNX2, osteopontin (OPN), and collagen type 1 a1 chain (Col1A1), and decreased the number of calcium nodules and ALP activity. In contrast, knockdown miR-452-3p (miR-452-3p inhibitor) produced the opposite effect. In terms of mechanism, we found that Smad4 may be the target of miR-452-3p, and knockdown Smad4 (si-Smad4) partially inhibited the osteoblast differentiation enhanced by miR-452-3p. Our results suggested that miR-452-3p plays an important role in osteoblast differentiation by targeting Smad4. Therefore, miR-452-3p is expected to be used in the treatment of bone formation and regeneration.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (36)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....