Niloofar Moosavi

ORCID: 0000-0001-5442-9708
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Statistical Methods and Inference
  • Advanced Causal Inference Techniques
  • Statistical Methods and Bayesian Inference
  • Soil and Unsaturated Flow
  • Hydrology and Watershed Management Studies
  • Bayesian Modeling and Causal Inference
  • Fault Detection and Control Systems
  • Environmental and Agricultural Sciences
  • Neural Networks and Applications
  • Soil Moisture and Remote Sensing
  • Anomaly Detection Techniques and Applications
  • Irrigation Practices and Water Management
  • Climate change and permafrost

Umeå University
2021-2023

Forschungszentrum Jülich
2018

Mehdi Rahmati Lutz Weihermüller Jan Vanderborght Yakov Pachepsky Lili Mao and 95 more Seyed Hamidreza Sadeghi Niloofar Moosavi Hossein Kheirfam Carsten Montzka Kris Van Looy Brigitta Tóth Zeinab Hazbavi Wafa Al Yamani Ammar A. Albalasmeh Ma’in Z. Alghzawi Rafael Angulo‐Jaramillo Antônio Celso Dantas Antonino George Arampatzis Robson André Armindo Hossein Asadi Yazidhi Bamutaze Jordi Batlle‐Aguilar Béatrice Bechet Fabian Becker Günter Blöschl Klaus Bohne Isabelle Braud Clara Castellano Artemi Cerdà Maha Chalhoub Rogerio Cichota Milena Cı́slerová Brent Clothier Yves Coquet Wim Cornelis Corrado Corradini Artur Paiva Coutinho Muriel Bastista de Oliveira José Ronaldo de Macêdo Matheus Fonseca Durães Hojat Emami Iraj Eskandari Asghar Farajnia Alessia Flammini Nándor Fodor Mamoun A. Gharaibeh Mohamad Hossein Ghavimipanah Teamrat A. Ghezzehei Simone Giertz Evangelos Hatzigiannakis Rainer Horn Juan J. Jiménez Diederik Jacques Saskia Keesstra Hamid Kelishadi سید حمیدرضا صادقی Mehdi Kouselou Madan K. Jha Laurent Lassabatère Xiaoyan Li Mark A. Liebig Ľubomír Lichner M.V. López Deepesh Machiwal Dirk Mallants Micael Stolben Mallmann Jean Dalmo de Oliveira Marques Miles R. Marshall Jan Mertens Félicien Meunier Mohammad Hossein Mohammadi Binayak P. Mohanty Mansonia Pulido‐Moncada Suzana Maria Gico Lima Montenegro Renato Morbidelli David Moret‐Fernández Ali Akbar Moosavi Mohammad Reza Mosaddeghi Seyed Bahman Mousavi Hasan Mozaffari Kamal Nabiollahi Mohammad Reza Neyshabouri Marta Vasconcelos Ottoni Theophilo Benedicto Ottoni Filho Mohammad Reza Pahlavan-Rad Andreas Panagopoulos Stephan Peth Pierre‐Emmanuel Peyneau Tommaso Picciafuoco Jean Poesen Manuel Pulido Fernández Dalvan José Reinert Sabine Reinsch Meisam Rezaei Francis Parry Roberts David A. Robinson Jesús Rodrigo‐Comino Otto Corrêa Rotunno Filho Tadaomi Saito Hideki Suganuma

Abstract. In this paper, we present and analyze a novel global database of soil infiltration measurements, the Soil Water Infiltration Global (SWIG) database. total, 5023 curves were collected across all continents in SWIG These data either provided quality checked by scientists who performed experiments or they digitized from published articles. Data 54 different countries included with major contributions Iran, China, USA. addition to its extensive geographical coverage, cover research...

10.5194/essd-10-1237-2018 article EN cc-by Earth system science data 2018-07-10
Mehdi Rahmati Lutz Weihermüller Jan Vanderborght Yakov Pachepsky Lili Mao and 95 more Seyed Hamidreza Sadeghi Niloofar Moosavi Hossein Kheirfam Carsten Montzka Kris Van Looy Brigitta Tóth Zeinab Hazbavi Wafa Al Yamani Ammar A. Albalasmeh Ma’in Z. Alghzawi Rafael Angulo‐Jaramillo Antônio Celso Dantas Antonino George Arampatzis Robson André Armindo Hossein Asadi Yazidhi Bamutaze Jordi Batlle‐Aguilar Béatrice Bechet Fabian Becker Günter Blöschl Klaus Bohne Isabelle Braud Clara Castellano Artemi Cerdà Maha Chalhoub Rogerio Cichota Milena Cı́slerová Brent Clothier Yves Coquet Wim Cornelis Corrado Corradini Artur Paiva Coutinho Muriel Bastista de Oliveira José Ronaldo de Macêdo Matheus Fonseca Durães Hojat Emami Iraj Eskandari Asghar Farajnia Alessia Flammini Nándor Fodor Mamoun A. Gharaibeh Mohamad Hossein Ghavimipanah Teamrat A. Ghezzehei Simone Giertz Evangelos Hatzigiannakis Rainer Horn Juan J. Jiménez Diederik Jacques Saskia Keesstra Hamid Kelishadi سید حمیدرضا صادقی Mehdi Kouselou Madan K. Jha Laurent Lassabatère Xiaoyan Li Mark A. Liebig Ľubomír Lichner M.V. López Deepesh Machiwal Dirk Mallants Micael Stolben Mallmann Jean Dalmo de Oliveira Marques Miles R. Marshall Jan Mertens Félicien Meunier Mohammad Hossein Mohammadi Binayak P. Mohanty Mansonia Pulido‐Moncada Suzana Montenegro Renato Morbidelli David Moret‐Fernández Ali Akbar Moosavi Mohammad Reza Mosaddeghi Seyed Bahman Mousavi Hasan Mozaffari Kamal Nabiollahi Mohammad Reza Neyshabouri Marta Vasconcelos Ottoni Theophilo Benedicto Ottoni Filho Mohammad Reza Pahlavan Rad Andreas Panagopoulos Stephan Peth Pierre‐Emmanuel Peyneau Tommaso Picciafuoco Jean Poesen Manuel Pulido Fernández Dalvan José Reinert Sabine Reinsch Meisam Rezaei Francis Parry Roberts David A. Robinson Jesús Rodrigo‐Comino Otto Corrêa Rotunno Filho Tadaomi Saito Hideki Suganuma

Abstract. In this paper, we present and analyze a global database of soil infiltration measurements, the Soil Water Infiltration Global (SWIG) database, for first time. total, 5023 curves were collected across all continents in SWIG database. These data either provided quality checked by scientists who performed experiments or they digitized from published articles. Data 54 different countries included with major contributions Iran, China, USA. addition to its spatial coverage, cover time...

10.5194/essd-2018-11 preprint EN cc-by 2018-03-06

Convolutional neural networks (CNN) have been successful in machine learning applications. Their success relies on their ability to consider space invariant local features. We the use of CNN fit nuisance models semiparametric estimation average causal effect a treatment. In this setting, are functions pretreatment covariates that need be controlled for. an application where we want estimate early retirement health outcome, propose control for time-structured covariates. Thus, is used when...

10.1080/10618600.2023.2257247 article EN cc-by Journal of Computational and Graphical Statistics 2023-09-12

Important advances have recently been achieved in developing procedures yielding uniformly valid inference for a low dimensional causal parameter when high-dimensional nuisance models must be estimated. In this paper, we review the literature on and discuss costs benefits of using procedures. Naive estimation strategies based regularization, machine learning, or preliminary model selection stage finite sample distributions which are badly approximated by their asymptotic distributions. To...

10.1214/21-sts843 article EN Statistical Science 2022-10-19

Various methods have recently been proposed to estimate causal effects with confidence intervals that are uniformly valid over a set of data generating processes when high-dimensional nuisance models estimated by post-model-selection or machine learning estimators. These typically require all the confounders observed ensure identification effects. We contribute showing how semiparametric inference can be obtained in presence unobserved and models. propose uncertainty which allow for...

10.48550/arxiv.2401.06564 preprint EN cc-by-sa arXiv (Cornell University) 2024-01-01

Important advances have recently been achieved in developing procedures yielding uniformly valid inference for a low dimensional causal parameter when high-dimensional nuisance models must be estimated. In this paper, we review the literature on and discuss costs benefits of using procedures. Naive estimation strategies based regularisation, machine learning, or preliminary model selection stage finite sample distributions which are badly approximated by their asymptotic distributions. To...

10.48550/arxiv.2105.02071 preprint EN cc-by arXiv (Cornell University) 2021-01-01

Convolutional neural networks (CNN) have been successful in machine learning applications. Their success relies on their ability to consider space invariant local features. We the use of CNN fit nuisance models semiparametric estimation average causal effect a treatment. In this setting, are functions pre-treatment covariates that need be controlled for. an application where we want estimate early retirement health outcome, propose control for time-structured covariates. Thus, is used when...

10.48550/arxiv.2301.11732 preprint EN cc-by arXiv (Cornell University) 2023-01-01
Mehdi Rahmati Lutz Weihermüller Jan Vanderborght Yakov Pachepsky Lili Mao and 95 more Seyed Hamidreza Sadeghi Niloofar Moosavi Hossein Kheirfam Carsten Montzka Kris Van Looy Brigitta Tóth Zeinab Hazbavi Wafa Al Yamani Ammar A. Albalasmeh Ma’in Z. Alghzawi Rafael Angulo‐Jaramillo Antônio Celso Dantas Antonino George Arampatzis Robson André Armindo Hossein Asadi Yazidhi Bamutaze Jordi Batlle‐Aguilar Béatrice Bechet Fabian Becker Günter Blöschl Klaus Bohne Isabelle Braud Clara Castellano Artemi Cerdà Maha Chalhoub Rogerio Cichota Milena Cı́slerová Brent Clothier Yves Coquet Wim Cornelis Corrado Corradini Artur Paiva Coutinho Muriel Bastista de Oliveira José Ronaldo de Macêdo Matheus Fonseca Durães Hojat Emami Iraj Eskandari Asghar Farajnia Alessia Flammini Nándor Fodor Mamoun A. Gharaibeh Mohamad Hossein Ghavimipanah Teamrat A. Ghezzehei Simone Giertz Evangelos Hatzigiannakis Rainer Horn Juan J. Jiménez Diederik Jacques Saskia Keesstra Hamid Kelishadi سید حمیدرضا صادقی Mehdi Kouselou Madan K. Jha Laurent Lassabatère Xiaoyan Li Mark A. Liebig Ľubomír Lichner M.V. López Deepesh Machiwal Dirk Mallants Micael Stolben Mallmann Jean Dalmo de Oliveira Marques Miles R. Marshall Jan Mertens Félicien Meunier Mohammad Hossein Mohammadi Binayak P. Mohanty Mansonia Pulido‐Moncada Suzana Maria Gico Lima Montenegro Renato Morbidelli David Moret‐Fernández Ali Akbar Moosavi Mohammad Reza Mosaddeghi Seyed Bahman Mousavi Hasan Mozaffari Kamal Nabiollahi Mohammad Reza Neyshabouri Marta Vasconcelos Ottoni Theophilo Benedicto Ottoni Filho Mohammad Reza Pahlavan Rad Andreas Panagopoulos Stephan Peth Pierre‐Emmanuel Peyneau Tommaso Picciafuoco Jean Poesen Manuel Pulido Fernández Dalvan José Reinert Sabine Reinsch Meisam Rezaei Francis Parry Roberts David A. Robinson Jesús Rodrigo‐Comino Otto Corrêa Rotunno Filho Tadaomi Saito Hideki Suganuma

10.5194/essd-2018-11-supplement preprint EN 2018-03-06
Coming Soon ...