- Cold Atom Physics and Bose-Einstein Condensates
- Quantum, superfluid, helium dynamics
- Quantum Information and Cryptography
- Strong Light-Matter Interactions
- Nonlinear Photonic Systems
- Quantum many-body systems
- Advanced Fiber Laser Technologies
- Fractional Differential Equations Solutions
- Advanced Thermodynamics and Statistical Mechanics
- Quantum Mechanics and Applications
- Photonic and Optical Devices
- Theoretical and Computational Physics
- stochastic dynamics and bifurcation
- Orbital Angular Momentum in Optics
- Diffusion and Search Dynamics
- Photonic Crystals and Applications
- Quantum optics and atomic interactions
- Quantum and electron transport phenomena
- Nonlinear Waves and Solitons
- Advanced Mathematical Modeling in Engineering
- Mechanical and Optical Resonators
- NMR spectroscopy and applications
- Complex Network Analysis Techniques
- Quantum Computing Algorithms and Architecture
- Quantum chaos and dynamical systems
Universitat Politècnica de València
2005-2024
Institute of Photonic Sciences
2015-2024
Colorado School of Mines
2009-2019
Universitat de Barcelona
2013-2015
University College Cork
2012-2015
Okinawa Institute of Science and Technology Graduate University
2014
Institute for Cross-Disciplinary Physics and Complex Systems
2012
University of Castilla-La Mancha
2007
Universitat de València
2005-2006
Deviations from Brownian motion leading to anomalous diffusion are ubiquitously found in transport dynamics, playing a crucial role phenomena quantum physics life sciences. The detection and characterization of the measurement an individual trajectory challenging tasks, which traditionally rely on calculating mean squared displacement trajectory. However, this approach breaks down for cases important practical interest, e.g., short or noisy trajectories, ensembles heterogeneous non-ergodic...
Abstract In order to study transport in complex environments, it is extremely important determine the physical mechanism underlying diffusion and precisely characterize its nature parameters. Often, this task strongly impacted by data consisting of trajectories with short length (either due brief recordings or previous trajectory segmentation) limited localization precision. paper, we propose a machine learning method based on random forest architecture, which able associate single high...
We introduce a novel minimally disturbing method for sub-nK thermometry in Bose-Einstein condensate (BEC). Our technique is based on the Bose polaron model; namely, an impurity embedded BEC acts as thermometer. propose to detect temperature fluctuations from measurements of position and momentum impurity. Crucially, these cause minimal backaction hence, realize nondemolition measurement. Following paradigm emerging field quantum thermometry, we combine tools parameter estimation theory open...
We study the dynamics of a quantum impurity immersed in Bose-Einstein condensate as an open system framework Brownian motion model. derive generalized Langevin equation for position impurity. The is integrodifferential that contains memory kernel and driven by colored noise. These result from considering environment given degrees freedom gas, thus depend on its parameters, e.g. interaction strength between bosons, temperature, etc. role When untrapped, we find it exhibits super-diffusive...
Abstract The results of the Anomalous Diffusion Challenge (AnDi Challenge) (Muñoz-Gil G et al 2021 Nat. Commun. 12 6253) have shown that machine learning methods can outperform classical statistical methodology at characterization anomalous diffusion in both inference exponent α associated with each trajectory (Task 1), and determination underlying diffusive regime which produced such trajectories 2). Furthermore, five teams finished top three across tasks AnDi Challenge, those used...
We study a system of two bosons one species and third boson second in one-dimensional parabolic trap at zero temperature. assume contact repulsive inter- intra-species interactions. By means an exact diagonalization method we calculate the ground excited states for whole range use discrete group theory to classify eigenstates according symmetry interaction potential. also propose validate analytical ansatzs gaining physical insight over numerically obtained wavefunctions. show that, both...
We present the complete phase diagram for one-dimensional binary mixtures of bosonic ultracold atomic gases in a harmonic trap. obtain exact results with direct numerical diagonalization small number atoms, which permits us to quantify quantum many-body correlations. The Monte Carlo method is used calculate energies and density profiles larger system sizes. study properties wide range interaction parameters. For extreme values these parameters, different correlation limits can be identified,...
We study the dynamics of two strongly interacting bosons with an additional impurity atom trapped in a harmonic potential. Using exact numerical diagonalization we are able to fully explore dynamical evolution when interaction between distinct species is suddenly switched on (quenched). examine behavior densities, entanglement, Loschmidt echo, and spectral function for large range interspecies interactions find that even such small systems evidence Anderson's orthogonality catastrophe can be...
We propose experimentally feasible means for non-destructive thermometry of homogeneous Bose Einstein condensates in different spatial dimensions ($d\in\{1,2,3\}$). Our impurity based protocol suggests that the fundamental error bound on at sub nano Kelvin domain depends highly dimension, higher dimension better precision. Furthermore, sub-optimal by using measurements are is explored. specifically focus measuring position and momentum belong to family Gaussian measurements. show that,...
We systematically investigate and illustrate the complete ground-state phase diagram for a one-dimensional, three-species mixture of few repulsively interacting bosons trapped harmonically. To numerically obtain solutions to many-body Schr\"{o}dinger equation, we employ improved Exact Diagonalization method [T. D. Anh-Tai {\it et al.}, SciPost Physics 15, 048 (2023)], which is capable treating strongly-correlated few-body systems from first principles in an efficiently truncated Hilbert...
We present exact expressions for the quantum sloshing of Bose-Einstein condensates in a tilted two-well potential. Tunneling is suppressed by small potential difference between wells, or tilt. However, tunneling resonances occur critical values tilt when barrier high. At resonance, times on order 10-100 ms are possible. Furthermore, such lead to dynamical scheme creating few-body NOON-like macroscopic superposition states which protected many body wavefunction against fluctuations.
We consider an ultracold bosonic binary mixture confined in a one-dimensional double-well trap. The two components are assumed to be hyperfine internal states of the same atom. suppose that these spin-orbit coupled between each other. employ two-mode approximation starting from Gross-Pitaevskii equations and derive system ordinary differential governing temporal evolution inter-well population imbalance component species. study Josephson oscillations Bose-Einstein condensates by analyzing...
We study the quantum motion of an impurity atom immersed in a Bose Einstein condensate arbitrary dimension. The Bogoliubov excitations act as bosonic bath for impurity. present detailed derivation $d$-dimensional Langevin equations that describe dynamics system, and associated generalized tensor describes spectral density full generality. When is not trapped, we calculate mean square displacement, showing super diffusive. obtain also explicit expressions diffusive coefficient small large...
Using group theory arguments and numerical simulations, we demonstrate the possibility of changing vorticity or topological charge an individual vortex by means action a system possessing discrete rotational symmetry finite order. We establish on theoretical grounds "transmutation pass rule'' determining conditions for this phenomenon to occur numerically analize it in context two-dimensional optical lattices or, equivalently, that Bose-Einstein condensates periodic potentials.
We show that a two-component mixture of few repulsively interacting ultracold atoms in one-dimensional trap possesses very different quantum regimes and the crossover between them can be induced by tuning interactions one species. In composite fermionization regime, where both components are large, none species large occupation any natural orbital. Our results increasing interaction species, reach phase-separated regime. this weakly component stays at center becomes almost fully phase...
We present a many-body description for two-component ultracold bosonic gases when one of the species is in weakly interacting regime and other either or strongly interacting. In one-dimensional limit latter hybrid which Tonks-Girardeau gas immersed Bose-Einstein condensate, an example class quantum system involving tunable, superfluid environment. describe process phase separation microscopically as well semiclassically both situations show that correlations are maintained even separated phase.
We consider an atomic Bose-Einstein condensate trapped in a symmetric one-dimensional double-well potential the four-mode approximation and show that semiclassical dynamics of two ground-state modes can be strongly influenced by macroscopic occupation excited modes. In particular, addition already unveils features related to effect dissipation on condensate. general, we find rich includes Rabi oscillations, mixed Josephson-Rabi regime, self-trapping, chaotic behavior, existence fixed points....
We study the dynamics of an impurity embedded in a trapped Bose-Einstein condensate, i.e., Bose polaron problem. This problem is treated by recalling open quantum systems techniques: corresponds to particle performing Brownian motion, while excitation modes gas play role environment. It crucial that model considers parabolic trapping potential resemble experimental conditions. Thus, we detail here how formal derivation changes due trap, comparison homogeneous gas. More importantly, elucidate...
We study entanglement and squeezing of two uncoupled impurities immersed in a Bose-Einstein condensate. treat them as quantum Brownian particles interacting with bath composed the Bogoliubov modes The Langevin-like stochastic equations derived exhibit memory effects. scenarios: (i) In absence an external potential, we observe sudden death entanglement; (ii) presence harmonic survives even at asymptotic time limit. Our considers experimentally tunable parameters.
Abstract Anomalous diffusion occurs at very different scales in nature, from atomic systems to motions cell organelles, biological tissues or ecology, and also artificial materials, such as cement. Being able accurately measure the anomalous exponent associated a given particle trajectory, thus determining whether subdiffuses, superdiffuses performs normal diffusion, is of key importance understand process. Also it often important trustingly identify model behind this gives large amount...
Using group theory arguments, we demonstrate that, unlike in homogeneous media, no symmetric vortices of arbitrary order can be generated two-dimensional (2D) nonlinear systems possessing a discrete-point symmetry. The only condition needed is that the non-linearity term exclusively depends on modulus field. In particular case 2D periodic systems, such as photonic crystals or Bose-Einstein condensates potentials, it shown realization discrete symmetry forbids existence vortex solutions with...
We study the complex quantum dynamics of a system many interacting atoms in an elongated anharmonic trap. The is initially Bose-Einstein condensed state, well described by Thomas-Fermi profile direction and ground state transverse directions. After sudden quench to coherent superposition lowest energy modes, starts. describe this process employing three-mode many-body model. experimental realization displays decaying oscillations atomic density distribution. While mean-field description...
The concept of measure synchronization between two coupled quantum many-body systems is presented. In general terms we consider whose dynamics gets through the contact particle-particle interaction. This coupling shown to produce synchronization, a generalization synchrony large class which takes place in absence dissipation. We find that properties for subsystems, e.g., condensed fractions and particle fluctuations, behave coordinated way. To illustrate simple case species bosons occupying...