Airel Pérez‐Suárez

ORCID: 0000-0001-8796-6243
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Advanced Clustering Algorithms Research
  • Complex Network Analysis Techniques
  • Data Management and Algorithms
  • Biometric Identification and Security
  • Data Mining Algorithms and Applications
  • Forensic Fingerprint Detection Methods
  • Image Retrieval and Classification Techniques
  • Face recognition and analysis
  • Text and Document Classification Technologies
  • Digital Media Forensic Detection
  • Advanced Image and Video Retrieval Techniques
  • Opinion Dynamics and Social Influence
  • User Authentication and Security Systems
  • Image Processing Techniques and Applications
  • Advanced Text Analysis Techniques
  • Data Stream Mining Techniques
  • Face and Expression Recognition
  • Multimodal Machine Learning Applications
  • Rough Sets and Fuzzy Logic
  • Data Visualization and Analytics
  • Advanced Graph Neural Networks
  • Anomaly Detection Techniques and Applications
  • Video Surveillance and Tracking Methods

Advanced Technologies Application Center
2012-2021

National Institute of Astrophysics, Optics and Electronics
2013

Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear
2013

Fingerprint-based biometric systems have experienced a large development in the past. In spite of many advantages, they are still vulnerable to attack presentations (APs). Therefore, task determining whether sample stems from live subject (i.e., bona fide) or an artificial replica is mandatory requirement which has recently received considerable attention. Nowadays, when materials for fabrication Presentation Attack Instruments (PAIs) been used train Detection (PAD) methods, PAIs can be...

10.1109/access.2020.3048756 article EN cc-by IEEE Access 2021-01-01

In spite of the advantages using fingerprints for subject authentication, several works have shown that fingerprint recognition systems can be easily circumvented by means artificial or presentation attack instruments (PAIs). order to address threat, existing detection (PAD) methods reported a high performance when materials used fabrication PAIs and capture devices are known. However, more complex realistic scenarios where one those factors remains unknown, these PAD unable correctly...

10.1049/bme2.12023 article EN cc-by IET Biometrics 2021-02-23

Clustering is a Data Mining technique which has been widely used in many practical applications. In some of these applications like, medical diagnosis, categorization digital libraries, topic detection and others, the objects could belong to more

10.3233/ida-2012-0520 article EN Intelligent Data Analysis 2012-03-01

Face clustering is the task of grouping unlabeled face images according to individual identities. Several applications require this type clustering, for instance, social media, law enforcement, and surveillance applications. In paper, we propose an effective graph-based method faces in wild. The proposed algorithm does not prior knowledge data. This fact increases pertinence near market solutions. experiments conducted on four well-known datasets showed that our proposal achieves...

10.1155/2019/6065056 article EN Computational Intelligence and Neuroscience 2019-12-14

Fingerprint-based biometric systems have experienced a large development in the last years. Despite their many advantages, they are still vulnerable to presentation attacks (PAs). Therefore, task of determining whether sample stems from live subject (i.e., bona fide) or an artificial replica is mandatory issue which has received lot attention recently. Nowadays, when materials for fabrication Presentation Attack Instruments (PAIs) been used train PA Detection (PAD) methods, PAIs can be...

10.48550/arxiv.1908.10163 preprint EN other-oa arXiv (Cornell University) 2019-01-01

Spanish Abstract: Existen diversos problemas en el Reconocimiento de Patrones y la Mineria Datos que, por su naturaleza, consideran que los objetos pueden pertenecer a mas una clase o grupo. DClustR es un algoritmo dinamico agrupamiento con traslape ha mostrado, tareas documentos, mejor balance entre calidad grupos eficiencia algoritmos dinamicos reportados literatura. A pesar obtener buenos resultados, puede ser poco util aplicaciones trabajen grandes colecciones debido tiene complejidad...

10.5281/zenodo.7080817 article ES cc-by Zenodo (CERN European Organization for Nuclear Research) 2015-12-16

Existen diversos problemas en el Reconocimiento de Patrones y la Mineria Datos que, por su naturaleza, consideran que los objetos pueden pertenecer a mas una clase o grupo. DClustR es un algoritmo dinamico agrupamiento con traslape ha mostrado, tareas documentos, mejor balance entre calidad grupos eficiencia algoritmos dinamicos reportados literatura. A pesar obtener buenos resultados, puede ser poco util aplicaciones trabajen grandes colecciones debido tiene complejidad computacional...

10.5281/zenodo.7467480 article ES cc-by Zenodo (CERN European Organization for Nuclear Research) 2015-12-16
Coming Soon ...