Stephan Heijl

ORCID: 0000-0001-8920-4293
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • BRCA gene mutations in cancer
  • Genomics and Rare Diseases
  • Cancer Genomics and Diagnostics
  • Genomic variations and chromosomal abnormalities
  • Genomics and Phylogenetic Studies
  • Nutrition, Genetics, and Disease
  • Genetic Associations and Epidemiology
  • Genomics and Chromatin Dynamics
  • Genetic factors in colorectal cancer
  • Molecular Biology Techniques and Applications
  • RNA and protein synthesis mechanisms

Bio-Prodict (Netherlands)
2020-2023

Leila Dorling Sara Carvalho Jamie Allen Michael T. Parsons Cristina Fortuño and 95 more Anna González‐Neira Stephan Heijl Muriel A. Adank Thomas U. Ahearn Irene L. Andrulis Päivi Auvinen Heiko Becher Matthias W. Beckmann Sabine Behrens Marina Bermisheva Natalia Bogdanova Stig E. Bojesen Manjeet K. Bolla Michael Bremer Ignacio Briceño Nicola J. Camp Archie Campbell Jose E. Castelao Jenny Chang-Claude Stephen J. Chanock Georgia Chenevix‐Trench J. Margriet Collée Kamila Czene Joe Dennis Thilo Dörk Mikael Eriksson D. Gareth Evans Peter A. Fasching Jonine D. Figueroa Henrik L. Flyger Marike Gabrielson Manuela Gago‐Dominguez Montserrat García‐Closas Graham G. Giles Gord Glendon Pascal Guénel Melanie Gündert Andreas Hadjisavvas Eric Hahnen Per Hall Ute Hamann Elaine F. Harkness Mikael Hartman Frans B.L. Hogervorst Antoinette Hollestelle Reiner Hoppe Sacha J. Howell Anna Jakubowska Audrey Jung Elza Khusnutdinova Sung-Won Kim Yon‐Dschun Ko Vessela N. Kristensen Inge M.M. Lakeman Jingmei Li Annika Lindblom Maria A. Loizidou Artitaya Lophatananon Jan Lubiński Craig Luccarini Michael J. Madsen Arto Mannermaa Mehdi Manoochehri Sara Margolin Dimitrios Mavroudis Roger L. Milne Nur Aishah Mohd Taib Kenneth Muir Heli Nevanlinna William G. Newman Jan C. Oosterwijk Sue K. Park Paolo Peterlongo Paolo Radice Emmanouil Saloustros Elinor J. Sawyer Rita K. Schmutzler Mitul Shah Xueling Sim Melissa C. Southey Harald Surowy Maija Suvanto Ian Tomlinson Diana Torres Thérèse Truong Christi J. van Asperen Regina Waltes Qin Wang Xiaohong R. Yang Paul D.P. Pharoah Marjanka K. Schmidt Javier Benı́tez Bas Vroling Alison M. Dunning Soo‐Hwang Teo

Protein truncating variants in ATM, BRCA1, BRCA2, CHEK2, and PALB2 are associated with increased breast cancer risk, but risks missense these genes uncertain. We analyzed data on 59,639 cases 53,165 controls from studies participating the Breast Cancer Association Consortium BRIDGES project. sampled training (80%) validation (20%) sets to analyze rare ATM (1146 variants), BRCA1 (644), BRCA2 (1425), CHEK2 (325), (472). evaluated according five silico prediction-of-deleteriousness algorithms,...

10.1186/s13073-022-01052-8 article EN cc-by Genome Medicine 2022-05-18

Abstract Heterozygous carriers of germline loss-of-function variants in the tumor suppressor gene checkpoint kinase 2 (CHEK2) are at an increased risk for developing breast and other cancers. While truncating CHEK2 known to be pathogenic, interpretation missense uncertain significance (VUS) is challenging. Consequently, many VUS remain unclassified both functionally clinically. Here we describe a mouse embryonic stem (mES) cell–based system quantitatively determine functional impact 50 human...

10.1158/0008-5472.can-21-1845 article EN cc-by-nc-nd Cancer Research 2021-12-13

Predicting pathogenicity of missense variants in molecular diagnostics remains a challenge despite the available wealth data, such as evolutionary information, and tools to integrate that data. We describe DeepRank-Mut, configurable framework designed extract learn from physicochemically relevant features amino acids surrounding 3D space. For each variant, various atomic residue-level are extracted its structural environment, including sequence conservation scores acids, stored multi-channel...

10.3389/fmolb.2023.1204157 article EN cc-by Frontiers in Molecular Biosciences 2023-07-05

In this white paper we introduce Helix, an AI based solution for missense pathogenicity prediction. With recent advances in the sequencing of human genomes, massive amounts genetic data have become available. This has shifted burden labor diagnostics and research from gathering to its interpretation. Helix presents a state art platform prediction variants. addition offering best-in-class predictive performance, offers that allows researchers analyze interpret variants depth can be accessed...

10.48550/arxiv.2104.01033 preprint EN cc-by arXiv (Cornell University) 2021-01-01

Abstract Despite advances in the field of missense variant effect prediction, real clinical utility current computational approaches remains rather limited. There is a large difference performance metrics reported by developers and those observed world. Most currently available predictors suffer from one or more types circularity their training evaluation strategies that lead to overestimation predictive performance. We present generic strategy independent dataset properties algorithms used,...

10.1101/2020.05.06.080424 preprint EN cc-by-nd bioRxiv (Cold Spring Harbor Laboratory) 2020-05-07

<div>Abstract<p>Heterozygous carriers of germline loss-of-function variants in the tumor suppressor gene checkpoint kinase 2 (<i>CHEK2)</i> are at an increased risk for developing breast and other cancers. While truncating <i>CHEK2</i> known to be pathogenic, interpretation missense uncertain significance (VUS) is challenging. Consequently, many VUS remain unclassified both functionally clinically. Here we describe a mouse embryonic stem (mES) cell–based...

10.1158/0008-5472.c.6513927.v1 preprint EN 2023-03-31

<div>Abstract<p>Heterozygous carriers of germline loss-of-function variants in the tumor suppressor gene checkpoint kinase 2 (<i>CHEK2)</i> are at an increased risk for developing breast and other cancers. While truncating <i>CHEK2</i> known to be pathogenic, interpretation missense uncertain significance (VUS) is challenging. Consequently, many VUS remain unclassified both functionally clinically. Here we describe a mouse embryonic stem (mES) cell–based...

10.1158/0008-5472.c.6513927 preprint EN 2023-03-31
Leila Dorling Sara Carvalho Jamie Allen Michael T. Parsons Cristina Fortuño and 95 more Anna González‐Neira Stephan Heijl Muriel A. Adank Thomas U. Ahearn Irene L. Andrulis Päivi Auvinen Heiko Becher Matthias W. Beckmann Sabine Behrens Marina Bermisheva Natalia Bogdanova Stig E. Bojesen Manjeet K. Bolla Michael Bremer Ignacio Briceño Nicola J. Camp Archie Campbell Jose E. Castelao Jenny Chang‐Claude Stephen J. Chanock Georgia Chenevix‐Trench Margriet Collée Kamila Czene Joe Dennis Thilo Dörk Mikael Eriksson D. Gareth Evans Peter A. Fasching Jonine D. Figueroa Henrik Flyger Marike Gabrielson Manuela Gago‐Dominguez Montserrat García‐Closas Graham G. Giles Gord Glendon Pascal Guénel Melanie Gündert Andreas Hadjisavvas Eric Hahnen Per Hall Ute Hamann Elaine F. Harkness Mikael Hartman Frans B.L. Hogervorst Antoinette Hollestelle Reiner Hoppe Anthony Howell Anna Jakubowska Audrey Jung Э. К. Хуснутдинова Sung-Won Kim Yon‐Dschun Ko Vessela N. Kristensen Inge M.M. Lakeman Jingmei Li Annika Lindblom Maria A. Loizidou Artitaya Lophatananon Jan Lubiński Craig Luccarini Michael J. Madsen Graham J. Mann Mehdi Manoochehri Sara Margolin Dimitrios Mavroudis Roger L. Milne Nur Aishah Mohd Taib Kenneth Muir Heli Nevanlinna William G. Newman Jan C. Oosterwijk Sue K. Park Paolo Peterlongo Paolo Radice Emmanouil Saloustros Elinor J. Sawyer Rita K. Schmutzler Mitul Shah Xueling Sim Melissa C. Southey Harald Surowy Maija Suvanto Ian Tomlinson Diana Torres Thérèse Truong Christi J. van Asperen Regina Waltes Qin Wang Xiaohong R. Yang Paul D.P. Pharoah Marjanka K. Schmidt Javier Benı́tez Bas Vroling Alison M. Dunning Soo‐Hwang Teo

Abstract BACKGROUND Protein truncating variants in ATM, BRCA1, BRCA2, CHEK2 and PALB2 are associated with increased breast cancer risk, but risks missense these genes uncertain. METHODS Combining 59,639 cases 53,165 controls, we sampled training (80%) validation (20%) sets to analyze rare ATM (1,146 variants), BRCA1 (644), BRCA2 (1,425), (325) (472). We evaluated according five in-silico prediction-of-deleteriousness algorithms, functional protein domain, frequency, using logistic regression...

10.1101/2021.09.02.21262369 preprint EN cc-by medRxiv (Cold Spring Harbor Laboratory) 2021-09-15
Coming Soon ...