Marc Noy

ORCID: 0000-0002-2399-1359
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Advanced Graph Theory Research
  • Stochastic processes and statistical mechanics
  • Limits and Structures in Graph Theory
  • Advanced Combinatorial Mathematics
  • Computational Geometry and Mesh Generation
  • Graph theory and applications
  • Graph Labeling and Dimension Problems
  • Mathematical Dynamics and Fractals
  • Markov Chains and Monte Carlo Methods
  • Bayesian Methods and Mixture Models
  • graph theory and CDMA systems
  • Data Management and Algorithms
  • Complexity and Algorithms in Graphs
  • Optimization and Packing Problems
  • Point processes and geometric inequalities
  • Robotic Path Planning Algorithms
  • Digital Image Processing Techniques
  • Robotics and Sensor-Based Localization
  • Cellular Automata and Applications
  • Topological and Geometric Data Analysis
  • Interconnection Networks and Systems
  • semigroups and automata theory
  • Advanced Mathematical Theories and Applications
  • Random Matrices and Applications
  • Mathematics and Applications

Universitat Politècnica de Catalunya
2014-2024

Centre de Recerca Matemàtica
2022-2024

Barcelona Graduate School of Mathematics
2014-2019

TU Wien
2013

We present a complete analytic solution to the problem of counting planar graphs. prove an estimate <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g Subscript n Baseline tilde g dot Superscript negative 7 slash 2 gamma factorial"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>g</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>∼<!-- ∼ --></mml:mo> <mml:mo>⋅<!-- ⋅ <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- −...

10.1090/s0894-0347-08-00624-3 article EN publisher-specific-oa Journal of the American Mathematical Society 2008-10-17

10.1016/s0012-365x(98)00372-0 article EN Discrete Mathematics 1999-06-01

10.1016/s0196-8858(02)00527-4 article EN publisher-specific-oa Advances in Applied Mathematics 2003-02-01

10.1007/pl00009464 article EN Discrete & Computational Geometry 1999-10-01

10.1016/j.jcta.2010.03.017 article EN publisher-specific-oa Journal of Combinatorial Theory Series A 2010-04-01

10.1016/s0925-7721(00)00010-9 article EN publisher-specific-oa Computational Geometry 2000-08-01

10.1016/s0097-3165(03)00122-5 article EN publisher-specific-oa Journal of Combinatorial Theory Series A 2003-10-01

10.1016/j.ejc.2007.04.011 article EN publisher-specific-oa European Journal of Combinatorics 2007-04-30

10.1016/s0925-7721(99)00016-4 article EN Computational Geometry 1999-09-01

Abstract Consider a family \documentclass{article}\usepackage{mathrsfs, amsmath, amssymb}\pagestyle{empty}\begin{document}\begin{align*}\mathcal{T}\end{align*}\end{document} of 3‐connected graphs moderate growth, and let amssymb}\pagestyle{empty}\begin{document}\begin{align*}\mathcal{G}\end{align*}\end{document} be the class whose components are in . We present general framework for analyzing such classes based on singularity analysis generating functions, which generalizes previously...

10.1002/rsa.20421 article EN Random Structures and Algorithms 2012-04-26

10.1016/s0012-365x(97)00121-0 article EN publisher-specific-oa Discrete Mathematics 1998-02-01

10.1016/s0166-218x(99)00042-6 article EN publisher-specific-oa Discrete Applied Mathematics 1999-07-01

10.1016/j.jcta.2010.11.014 article EN publisher-specific-oa Journal of Combinatorial Theory Series A 2010-11-30

10.1016/j.jcta.2011.04.010 article EN Journal of Combinatorial Theory Series A 2011-05-08

10.1016/j.comgeo.2004.02.003 article EN publisher-specific-oa Computational Geometry 2004-04-21

Let $G(n,M)$ be the uniform random graph with $n$ vertices and $M$ edges. Erdős Rényi (1960) conjectured that limiting probability \[ \lim _{n \to \infty } \mathrm {Pr}\{G(n,\textstyle {n\over 2}) \hbox { is planar}\} \] exists a constant strictly between $0$ $1$. Łuczak, Pittel Wierman (1994) proved this conjecture, Janson, Knuth (1993) gave lower upper bounds for probability. In paper we determine exact of being planar near critical point $M=n/2$. For each $\lambda$, find an analytic...

10.1090/s0002-9939-2014-12141-1 article EN Proceedings of the American Mathematical Society 2014-12-04

10.1016/s0304-3975(03)00225-1 article EN Theoretical Computer Science 2003-05-19

10.1016/s0166-218x(00)00230-4 article EN publisher-specific-oa Discrete Applied Mathematics 2001-04-01

We prove that every triangle-free planar graph is the of intersection a set segments in plane.Moreover, can be chosen only three directions (horizontal, vertical and oblique) such way no two cross, i.e., intersect common interior point.

10.7155/jgaa.00043 article EN Journal of Graph Algorithms and Applications 2002-01-01

10.1007/s00373-003-0534-z article EN Graphs and Combinatorics 2004-03-01

The Tutte polynomial is a notoriously hard graph invariant, and efficient algorithms for it are known only few special classes, like those of bounded tree‐width. notion clique‐width extends the definition cographs (graphs without induced $P_4$), more general than that We show subexponential algorithm (running in time $\exp{O(n^{1-\varepsilon})}\,$) computing on graphs clique‐width. In fact, our computes U‐polynomial.

10.1137/050645208 article EN SIAM Journal on Discrete Mathematics 2006-01-01

10.1016/s0166-218x(99)00006-2 article EN publisher-specific-oa Discrete Applied Mathematics 1999-04-01
Coming Soon ...