Changyu Xia

ORCID: 0000-0002-2865-6613
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Geometric Analysis and Curvature Flows
  • Advanced Mathematical Modeling in Engineering
  • Nonlinear Partial Differential Equations
  • Geometry and complex manifolds
  • Spectral Theory in Mathematical Physics
  • Advanced Differential Geometry Research
  • Numerical methods in inverse problems
  • Point processes and geometric inequalities
  • Geometric and Algebraic Topology
  • Analytic and geometric function theory
  • Composite Material Mechanics
  • Elasticity and Wave Propagation
  • Differential Equations and Boundary Problems
  • Mathematical Dynamics and Fractals
  • Dermatological and Skeletal Disorders
  • Graph theory and applications
  • Mathematics and Applications
  • Mechanical Behavior of Composites
  • Advanced Theoretical and Applied Studies in Material Sciences and Geometry
  • Therapeutic Uses of Natural Elements
  • Advanced Battery Technologies Research
  • Nonlinear Waves and Solitons
  • Polymer Science and Applications
  • Fractional Differential Equations Solutions
  • Holomorphic and Operator Theory

Hubei University
1987-2025

Southern University of Science and Technology
2022-2023

Universidade de Brasília
2012-2021

Max Planck Institute for Mathematics in the Sciences
2009-2010

Max Planck Institute for Mathematics
2010

University of Science and Technology of China
1991-1997

Instituto Nacional de Matemática Pura e Aplicada
1997

Instituto de Pesquisas Jardim Botânico do Rio de Janeiro
1997

Tohoku University
1994-1995

Fudan University
1989

10.1007/s10455-013-9392-y article EN Annals of Global Analysis and Geometry 2013-07-04

Li1+xAlxTi2-x(PO4)3 (LATP) is a NASICON-type solid electrolyte that presents stability in aqueous media and high ion conductivity. With these advantages, it expected to be used as cathode separator coating material for lithium-ion batteries improve battery performance. However, also displays level of residual moisture introduction due its strong water absorption. Meanwhile, LATP particle size key influential factor the thereby produces an impact on In this research, we prepared three...

10.1021/acsami.5c01430 article EN ACS Applied Materials & Interfaces 2025-04-04

10.1016/j.jfa.2009.06.008 article EN publisher-specific-oa Journal of Functional Analysis 2009-06-25

10.1016/j.geomphys.2016.12.010 article EN publisher-specific-oa Journal of Geometry and Physics 2016-12-22

In this paper, we prove that complete open Riemannian manifolds with non-negative Ricci curvature of dimension greater than or equal to three in which some Caffarelli–Kohn–Nirenberg type inequalities are satisfied close the Euclidean space.

10.1112/s0010437x03000745 article EN Compositio Mathematica 2004-04-14

10.1016/j.jde.2018.01.041 article EN publisher-specific-oa Journal of Differential Equations 2018-02-01

We find a new sharp Caffarelli-Kohn-Nirenberg inequality and show that the Euclidean spaces are only complete non-compact Riemannian manifolds of nonnegative Ricci curvature satisfying this inequality.We also open manifold with non-negative in which optimal Nash holds is isometric to space.

10.4310/mrl.2007.v14.n5.a14 article EN Mathematical Research Letters 2007-01-01

10.1007/s00526-010-0340-4 article EN Calculus of Variations and Partial Differential Equations 2010-06-12

10.1007/s00033-014-0426-5 article EN Zeitschrift für angewandte Mathematik und Physik 2014-05-02

10.1016/j.jfa.2004.11.009 article EN publisher-specific-oa Journal of Functional Analysis 2005-01-26

We study eigenvalues of polyharmonic operators on compact Riemannian manifolds with boundary (possibly empty). In particular, we prove a universal inequality for the domains in Euclidean space. This controls $k$th eigenvalue by lower eigenvalues, independently particular geometry domain. Our is sharper than known Payne-Pólya-Weinberg type and also covers important Yang Dirichlet Laplacian. inequalities order operator space which case biharmonic buckling problem strengthen estimates obtained...

10.1090/s0002-9947-2010-05147-5 article EN Transactions of the American Mathematical Society 2010-12-16

10.1016/j.geomphys.2018.02.020 article EN Journal of Geometry and Physics 2018-03-08

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega overbar"> <mml:semantics> <mml:mover> <mml:mi mathvariant="normal">Ω</mml:mi> <mml:mo accent="false">¯</mml:mo> </mml:mover> <mml:annotation encoding="application/x-tex">\overline {\Omega }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an (<inline-formula alttext="n plus 1"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo>...

10.1090/s0002-9939-97-04078-1 article EN Proceedings of the American Mathematical Society 1997-01-01

10.1016/j.jmaa.2011.10.020 article EN publisher-specific-oa Journal of Mathematical Analysis and Applications 2011-10-16

We prove that for any given integer $n\geq 2$ and $q\in [1, n)$ there exists a constant $\epsilon= \epsilon(n,q)>0$ such $n$-dimensional complete Riemannian manifold with nonnegative Ricci curvature, in which the Sobolev inequality \[ \left(\int_M|f|^{\frac {nq}{n-q}}\,dv\right)^{\frac{n-q}{nq}}\leq (K(n,q)+\epsilon)\left(\int_M|\nabla f|^q \,dv\right)^{\sfrac{1}{q}}, \,\,\forall f\in C_0^{\infty}(M) \] holds $K(n,q)$ optimal of this Euclidean space $R^n$, is diffeomorphic to~$R^n$.

10.1215/ijm/1258138064 article EN other-oa Illinois Journal of Mathematics 2001-10-01

10.1016/j.geomphys.2009.09.001 article EN publisher-specific-oa Journal of Geometry and Physics 2009-09-26

We investigate the eigenvalues of buckling problem arbitrary order on compact domains in Euclidean spaces and spheres. obtain universal bounds for kth eigenvalue terms lower independently particular geometry domain.

10.1080/03605302.2010.498854 article EN Communications in Partial Differential Equations 2010-08-08

10.1016/j.jmaa.2013.06.070 article EN publisher-specific-oa Journal of Mathematical Analysis and Applications 2013-07-06

10.1016/j.chaos.2013.01.008 article EN Chaos Solitons & Fractals 2013-02-14
Coming Soon ...