Giorgos Mamakoukas

ORCID: 0000-0002-3461-0849
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Model Reduction and Neural Networks
  • Adaptive Control of Nonlinear Systems
  • Control Systems and Identification
  • Underwater Vehicles and Communication Systems
  • Probabilistic and Robust Engineering Design
  • Lattice Boltzmann Simulation Studies
  • Neural Networks and Applications
  • Advanced Control Systems Optimization
  • Teleoperation and Haptic Systems
  • Advanced Vision and Imaging
  • Distributed Control Multi-Agent Systems
  • Fluid Dynamics and Turbulent Flows
  • Domain Adaptation and Few-Shot Learning
  • Dynamics and Control of Mechanical Systems
  • Power System Optimization and Stability
  • Control and Dynamics of Mobile Robots
  • Water Quality Monitoring Technologies
  • Fish Ecology and Management Studies
  • Fault Detection and Control Systems
  • Neural Networks and Reservoir Computing
  • Micro and Nano Robotics
  • Fluid Dynamics and Vibration Analysis
  • Medical Image Segmentation Techniques
  • Fuel Cells and Related Materials
  • Iterative Learning Control Systems

Northwestern University
2018-2023

Motion Control (United States)
2023

Mitsubishi Electric (United States)
2022

Zhejiang University of Science and Technology
2016

This article presents a generalizable methodology for data-driven identification of nonlinear dynamics that bounds the model error in terms prediction horizon and magnitude derivatives system states. Using higher order general need not be known, we construct Koopman-operator-based linear representation utilize Taylor series accuracy analysis to derive an bound. The resulting formula is used choose basis functions obtain Koopman using closed-form expression can computed real time. inverted...

10.1109/tro.2021.3076581 article EN publisher-specific-oa IEEE Transactions on Robotics 2021-05-28

This paper presents a data-driven methodology for linear embedding of nonlinear systems.Utilizing structural knowledge general dynamics, the authors exploit Koopman operator to develop systematic, approach constructing representation in terms higher order derivatives underlying dynamics.With representation, system is then controlled with an LQR feedback policy, gains which need be calculated only once.As result, enables fast control synthesis.We demonstrate efficacy simulations and...

10.15607/rss.2019.xv.054 article EN 2019-06-22

In this article, we demonstrate the benefits of imposing stability on data-driven Koopman operators. The identification stable operators (DISKO) is implemented using an algorithm [1] that computes nearest <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">stable</i> matrix solution to a least-squares reconstruction error. As first result, derive formula describes prediction error representations for arbitrary number time steps, and which shows...

10.1109/tro.2022.3228130 article EN IEEE Transactions on Robotics 2023-04-04

Interest in soft robotics has increased recent years due to their potential a myriad of applications. A wide variety robots emerged, including bio-inspired robotic swimmers such as jellyfish, rays, and fish. However, the highly nonlinear fluid-structure interactions pose considerable challenges analysis, modeling, feedback control these swimmers. In particular, developing models that are high fidelity but also amenable for remains an open problem. this work, we propose data-driven approach...

10.1109/aim43001.2020.9159033 article EN 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 2020-07-01

Model predictive control (MPC) is a powerful feedback technique that often used in data-driven robotics. The performance of MPC depends on the accuracy model, which requires careful tuning. Furthermore, specifying task with an objective function and synthesizing policy are not straightforward typically lead to suboptimal solutions driven by trial error. To address these challenges, we present method jointly optimize system identification, specification, synthesis unknown dynamical systems....

10.1109/icra48506.2021.9562025 article EN 2021-05-30

This paper derives nonlinear feedback control synthesis for general affine systems using second-order actions, the needle variations of optimal control, as basis choosing each response to current state. A second result this is that method provably exploits controllability a system by virtue an explicit dependence variation on Lie bracket between vector fields. As result, decision necessarily decreases objective when nonlinearly controllable first-order brackets. Simulation results...

10.1177/0278364918776083 article EN The International Journal of Robotics Research 2018-08-13

This paper uses Sequential Action Control (SAC), a model-based method for control of non-linear systems, fast, optimal trajectory-tracking tasks in the presence fluid drift. Through benchmark example kinematic car, it is shown that SAC outperforms traditional offline projection - based optimization technique terms effort and objective cost. Motivated by recent work on effort-efficient, sight-independent weakly electric fish, this papers also shows successfully provides control-optimal...

10.1109/acc.2016.7526061 article EN 2022 American Control Conference (ACC) 2016-07-01

This paper presents robust Koopman model predictive control (RK-MPC), a framework that leverages the training errors of data-driven models to improve constraint satisfaction. Koopman-based has enabled fast nonlinear feedback using linear tools, but existing approaches ignore modeling error during control, which can lead violations. Our approach assumes unknown dynamics are Lipschitz-continuous and uses approximate Lipschitz constant for state- control-dependent error. We then use bound...

10.23919/acc53348.2022.9867811 article EN 2022 American Control Conference (ACC) 2022-06-08

Koopman operator theory offers a rigorous treatment of dynamics and has been emerging as powerful modeling learning-based control method enabling significant advancements across various domains robotics. Due to its ability represent nonlinear linear operator, fresh lens through which understand tackle the complex robotic systems. Moreover, it enables incremental updates is computationally inexpensive making particularly appealing for real-time applications online active learning. This review...

10.48550/arxiv.2408.04200 preprint EN arXiv (Cornell University) 2024-08-07

Learning a stable Linear Dynamical System (LDS) from data involves creating models that both minimize reconstruction error and enforce stability of the learned representation. We propose novel algorithm for learning LDSs. Using recent characterization matrices, we present an optimization method ensures at every step iteratively improves using gradient directions derived in this paper. When applied to LDSs with inputs, our approach---in contrast current methods LDSs---updates state control...

10.48550/arxiv.2006.03937 preprint EN other-oa arXiv (Cornell University) 2020-01-01

This paper demonstrates the benefits of imposing stability on data-driven Koopman operators. The identification stable operators (DISKO) is implemented using an algorithm \cite{mamakoukas_stableLDS2020} that computes nearest \textit{stable} matrix solution to a least-squares reconstruction error. As first result, we derive formula describes prediction error representations for arbitrary number time steps, and which shows constraints can improve predictive accuracy over long horizons. second...

10.48550/arxiv.2005.04291 preprint EN other-oa arXiv (Cornell University) 2020-01-01

In recent years, gliding robotic fish have emerged as promising mobile platforms for underwater sensing and monitoring due to their notable energy efficiency maneuverability. For of aquatic environments, it is important use efficient sampling strategies that incorporate previously observed data in deciding where sample next so the gained information maximized. this paper, we present an adaptive strategy mapping a scalar field environment using fish. An ergodic exploration framework employed...

10.1115/dscc2018-9179 article EN 2018-09-30

This paper investigates the convergence performance of second-order needle variation methods for nonlinear control-affine systems. Control solutions have a closed-form expression that is derived from first-and mode insertion gradients objective and are proven to exhibit superlinear near equilibrium. Compared first-order variations, proposed synthesis scheme exhibits superior at smaller computational cost than alternative feedback controllers. Simulation results on differential drive model...

10.1109/cdc.2018.8619405 article EN 2018-12-01

Abstract This paper presents an adaptive, needle variation-based feedback scheme for controlling affine nonlinear systems with unknown parameters that appear linearly in the dynamics. The proposed approach combines online parameter identifier a second-order sequential action controller has shown great promise nonlinear, underactuated, and high-dimensional constrained systems. Simulation results on dynamics of underwater glider robotic fish show advantages introducing estimation to when model...

10.1115/dscc2019-9134 article EN 2019-10-08

This paper derives nonlinear feedback control synthesis for general affine systems using second-order actions-the needle variations of optimal control-as the basis choosing each response to current state.A second result is that method provably exploits controllability a system by virtue an explicit dependence variation on Lie bracket between vector fields.As result, decision necessarily decreases objective when nonlinearly controllable first-order brackets.Simulation results differential...

10.15607/rss.2017.xiii.066 preprint EN 2017-07-12

This paper derives nonlinear feedback control synthesis for general affine systems using second-order actions---the needle variations of optimal control---as the basis choosing each response to current state. A second result is that method provably exploits controllability a system by virtue an explicit dependence variation on Lie bracket between vector fields. As result, decision necessarily decreases objective when nonlinearly controllable first-order brackets. Simulation results...

10.48550/arxiv.1804.09559 preprint EN other-oa arXiv (Cornell University) 2018-01-01

This paper presents a generalizable methodology for data-driven identification of nonlinear dynamics that bounds the model error in terms prediction horizon and magnitude derivatives system states. Using higher-order general need not be known, we construct Koopman operator-based linear representation utilize Taylor series accuracy analysis to derive an bound. The resulting formula is used choose order basis functions obtain using closed-form expression can computed real time. inverted...

10.48550/arxiv.2010.05778 preprint EN other-oa arXiv (Cornell University) 2020-01-01
Coming Soon ...