- Advanced Differential Equations and Dynamical Systems
- Functional Equations Stability Results
- Quantum chaos and dynamical systems
- Numerical methods for differential equations
- Stability and Controllability of Differential Equations
- Mathematical and Theoretical Epidemiology and Ecology Models
- Nonlinear Differential Equations Analysis
- Mathematical Dynamics and Fractals
- Nonlinear Dynamics and Pattern Formation
- Nonlinear Waves and Solitons
- Advanced Mathematical Modeling in Engineering
- Evolution and Genetic Dynamics
- Iterative Methods for Nonlinear Equations
- Fixed Point Theorems Analysis
- Polynomial and algebraic computation
- Advanced Topics in Algebra
- Optimization and Variational Analysis
- Differential Equations and Numerical Methods
- Fractional Differential Equations Solutions
- Chaos control and synchronization
- Lipid metabolism and biosynthesis
- Neural dynamics and brain function
- Mathematical and Theoretical Analysis
- Nonlinear Photonic Systems
- Neural Networks Stability and Synchronization
Sichuan University
2015-2024
Universitat Autònoma de Barcelona
2019
Silesian University in Opava
2007
University of Waterloo
1997-2005
Union University
1997-2000
Academia Sinica
1993-1997
Chinese Academy of Sciences
1995-1996
Peking University
1989-1990
Recently, Ruan and Wang [J. Differential Equations, 188 (2003), pp. 135–163] studied the global dynamics of a SIRS epidemic model with vital nonlinear saturated incidence rate. Under certain conditions they showed that undergoes Bogdanov–Takens bifurcation; i.e., it exhibits saddle-node, Hopf, homoclinic bifurcations. They also considered existence none, one, or two limit cycles. In this paper, we investigate coexistence cycle loop in model. One difficulties is to determine multiplicity weak...
Hepatitis B virus (HBV) infection is endemic in many parts of the world. One characteristics HBV transmission age structure host population. In this paper, we propose an age-structured model for dynamics HBV. The population stratified by and divided into six subclasses: susceptible, latently infected, acutely infectious, carrier, recovered, vaccinated individuals. By determining basic reproduction number, study existence stability disease-free steady state solutions model. Numerical...
The concept of characteristic interval for piecewise monotone functions is introduced and used in the study their iterative roots on a closed interval.