- Advanced Graph Theory Research
- Graph theory and applications
- Interconnection Networks and Systems
- Synthesis and Properties of Aromatic Compounds
- Complexity and Algorithms in Graphs
- Graph Labeling and Dimension Problems
- Finite Group Theory Research
- Limits and Structures in Graph Theory
- Matrix Theory and Algorithms
- Computational Drug Discovery Methods
- Graphene research and applications
- graph theory and CDMA systems
- Graph Theory and Algorithms
Macau University of Science and Technology
2020-2025
Morgantown High School
2020
West Virginia University
2016-2020
South China Normal University
2020
South China Agricultural University
2013-2015
The Wiener polarity index <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mi>W</mml:mi></mml:mrow><mml:mrow><mml:mi>P</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> of a graph id="M2"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math> is the number unordered pairs vertices id="M3"><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mi>v</mml:mi></mml:math> id="M4"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:math> such that distance...
Let G be a simple connected graph. The generalized polarity Wiener index of is defined as the number unordered pairs vertices whose distance k. Some formulas are obtained for computing Cartesian product and tensor graphs in this article.
Abstract A cycle of a matroid is disjoint union circuits. supereulerian if it contains spanning cycle. To answer an open problem Bauer in 1985, Catlin proved [J. Graph Theory 12 (1988) 29–44] that for sufficiently large , every 2‐edge‐connected simple graph with and minimum degree supereulerian. In [Eur. J. Combinatorics, 33 (2012), 1765–1776], shown any connected regular cocircuit satisfies then We prove the following. (i) Let be matroid. If (ii) For real number there exists integer such cographic
There have been researches on sufficient spectral conditions for Hamiltonian properties and path-coverable of graphs. Utilizing the Bondy-Chv\'atal closure, we provide a unified approach to study graph eigenvalue these sharpen former results in [{\em Linear Algebra Appl.}, 432 (2010), 566-570], 2170-2173], Appl. Mech. Mater.}, 336-338 (2013), 2329-2334], 467 (2015), 254-266], Multilinear Algebra}, 64 (2016), 2252-2269], J. Comb. Optim.}, 35 (2018), 1104-1127], among others.