Abraham Rueda Zoca

ORCID: 0000-0003-0718-1353
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Advanced Banach Space Theory
  • Optimization and Variational Analysis
  • Fixed Point Theorems Analysis
  • Advanced Topics in Algebra
  • Advanced Topology and Set Theory
  • Holomorphic and Operator Theory
  • Approximation Theory and Sequence Spaces
  • Advanced Operator Algebra Research
  • Advanced Harmonic Analysis Research
  • Point processes and geometric inequalities
  • Functional Equations Stability Results
  • Digital Image Processing Techniques
  • Mathematical Analysis and Transform Methods
  • Finite Group Theory Research
  • Rings, Modules, and Algebras
  • Advanced Differential Geometry Research
  • Matrix Theory and Algorithms
  • Fuzzy and Soft Set Theory
  • Advanced Algebra and Logic
  • Heat Transfer and Optimization
  • Tensor decomposition and applications
  • Housing, Finance, and Neoliberalism
  • Homotopy and Cohomology in Algebraic Topology
  • Quantum Electrodynamics and Casimir Effect
  • Advanced Mathematical Modeling in Engineering

Universidad de Granada
2014-2025

ORCID
2024

Universidad de Murcia
2019-2023

University of Alicante
2023

Laboratoire de Mathématiques
2016-2017

Université de franche-comté
2017

Université Bourgogne Franche-Comté
2016

We introduce extensions of $\Delta$-points and Daugavet points in which slices are replaced by relatively weakly open subsets (super super points) or convex combinations (ccs ccs p

10.4064/dm230728-21-3 article EN cc-by Dissertationes Mathematicae 2024-01-01

10.1016/j.jfa.2013.09.004 article EN publisher-specific-oa Journal of Functional Analysis 2013-09-24

10.1016/j.jmaa.2018.04.017 article EN publisher-specific-oa Journal of Mathematical Analysis and Applications 2018-04-11

Abstract In this paper we analyse when every element of $$X{\widehat{\otimes }}_\pi Y$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>X</mml:mi> <mml:msub> <mml:mover> <mml:mo>⊗</mml:mo> <mml:mo>^</mml:mo> </mml:mover> <mml:mi>π</mml:mi> </mml:msub> <mml:mi>Y</mml:mi> </mml:mrow> </mml:math> attains its projective norm. We prove that is the case if X dual a subspace predual an $$\ell _1(I)$$ <mml:mi>ℓ</mml:mi> <mml:mn>1</mml:mn> <mml:mo>(</mml:mo>...

10.1007/s43037-024-00400-7 article EN cc-by Banach Journal of Mathematical Analysis 2025-02-07

10.1007/s43034-025-00408-6 article EN cc-by Annals of Functional Analysis 2025-02-08

10.1007/s40840-025-01847-z article EN cc-by Bulletin of the Malaysian Mathematical Sciences Society 2025-03-11

10.1016/j.jmaa.2015.03.056 article EN publisher-specific-oa Journal of Mathematical Analysis and Applications 2015-04-13

10.1016/j.jfa.2018.12.006 article EN publisher-specific-oa Journal of Functional Analysis 2018-12-21

Abstract We show that all the symmetric projective tensor products of a Banach space X have Daugavet property provided has and either is an $$L_1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> -predual (i.e., $$X^{*}$$ <mml:msup> <mml:mi>X</mml:mi> <mml:mrow> <mml:mrow/> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> isometric to -space) or vector-valued -space. In process proving it, we get number results...

10.1007/s43037-022-00186-6 article EN cc-by Banach Journal of Mathematical Analysis 2022-04-01

We continue the investigation of behaviour octahedral norms in tensor products Banach spaces. First, we will prove existence a space Y such that injective l1⊗^εY and L1⊗^εY both fail to have an norm, which solves two open problems from literature. Secondly, show presence metric approximation property octahedrality is preserved non-reflexive L-embedded taking projective with arbitrary space.

10.1093/qmath/hax020 article EN The Quarterly Journal of Mathematics 2017-02-14

10.1007/s13398-016-0324-0 article EN Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas 2016-08-31

We characterise the octahedrality of Lipschitz-free space norm in terms a new geometric property underlying metric space. study spaces with and without this property. Quite surprisingly, cannot be embedded isometrically into ℓ 1 similar Banach spaces.

10.5802/aif.3171 article EN Annales de l’institut Fourier 2018-01-01

The aim of this note is to study octahedrality in vector-valued Lipschitz-free Banach spaces on a metric space, under topological hypotheses it, by analysing the weak-star strong diameter 2 property Lipschitz function spaces. Also, we show an example that proves our results are optimal and actually relies underlying space as well one.

10.1017/s0308210517000373 article EN Proceedings of the Royal Society of Edinburgh Section A Mathematics 2017-12-28

We study the density of set SNA (M,Y) those Lipschitz maps from a (complete pointed) metric space M to Banach Y which strongly attain their norm (i.e., supremum defining is actually maximum). present new and somehow counterintuitive examples, we give some applications. First, show that (\mathbb T,Y) not dense in Lip _0(\mathbb for any , where \mathbb T denotes unit circle Euclidean plane. This provides first example Gromov concave every molecule exposed point ball Lipschitz-free space) does...

10.4171/rmi/1253 article EN Revista Matemática Iberoamericana 2021-02-01

10.1016/j.jmaa.2016.02.041 article EN Journal of Mathematical Analysis and Applications 2016-02-23

We study Daugavet points and $\Delta $-points in Lipschitz-free Banach spaces. prove that if $M$ is a compact metric space, then $\mu \in S_{\mathcal F(M)}$ point only there no denting of $B_{\mathcal at distance

10.4064/sm210111-5-5 article EN Studia Mathematica 2022-01-01

10.1016/j.jfa.2024.110627 article EN cc-by Journal of Functional Analysis 2024-08-13

The aim of this note is to provide several variants the diameter two properties for Banach spaces. We study such looking abundance diametral points, which holds in setting spaces with Daugavet property, example, and we intro- duce spaces, showing these new stability results, inheritance subspaces characterizations terms finite rank projections.

10.48550/arxiv.1509.02061 preprint EN other-oa arXiv (Cornell University) 2015-01-01

10.1016/j.jmaa.2015.02.046 article EN publisher-specific-oa Journal of Mathematical Analysis and Applications 2015-02-18

Abstract We study the Daugavet property in tensor products of Banach spaces. show that $L_{1}(\unicode[STIX]{x1D707})\widehat{\otimes }_{\unicode[STIX]{x1D700}}L_{1}(\unicode[STIX]{x1D708})$ has when $\unicode[STIX]{x1D707}$ and $\unicode[STIX]{x1D708}$ are purely non-atomic measures. Also, we $X\widehat{\otimes }_{\unicode[STIX]{x1D70B}}Y$ provided $X$ $Y$ $L_{1}$ -preduals with property, particular, spaces continuous functions this property. With same techniques, also obtain consequences...

10.1017/s147474801900063x article EN Journal of the Institute of Mathematics of Jussieu 2019-11-21

10.1215/17358787-2017-0036 article EN Banach Journal of Mathematical Analysis 2017-09-21

We analyse the strong connections between spaces of vector-valued Lipschitz functions and continuous linear operators. apply these links to study duality, Schur properties norm attainment in former class as well their

10.4064/sm8694-1-2017 article EN Studia Mathematica 2017-01-01
Coming Soon ...