Esteban Bravo-López

ORCID: 0000-0003-1812-5613
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Tree Root and Stability Studies
  • Landslides and related hazards
  • Hydrological Forecasting Using AI
  • Environmental and Ecological Studies
  • Remote Sensing in Agriculture
  • Regional Development and Innovation
  • Remote Sensing and LiDAR Applications
  • Hydrology and Watershed Management Studies
  • Business, Innovation, and Economy
  • Multidisciplinary Research Papers Compilation
  • Urban Design and Spatial Analysis
  • Cryospheric studies and observations
  • Logistics and Transportation Systems
  • Regional Economic and Spatial Analysis
  • Wood and Agarwood Research
  • Archaeology and Cultural Heritage
  • Precipitation Measurement and Analysis
  • Latin American Urban Studies
  • Smart Agriculture and AI
  • Climate variability and models
  • Flood Risk Assessment and Management
  • Forest ecology and management
  • Fire effects on ecosystems

Universidad del Azuay
2022-2024

Universidad de Jaén
2022-2024

Urbana University
2022

Natural hazards generate disasters and huge losses in several aspects, with landslides being one of the natural risks that have caused great impacts worldwide. The aim this research was to explore a method based on machine learning evaluate susceptibility rotational an area near Cuenca city, Ecuador, which has high incidence these phenomena, mainly due its environmental conditions, which, however, such studies are scarce. implemented consisted artificial neural network multilayer perceptron...

10.3390/rs14143495 article EN cc-by Remote Sensing 2022-07-21

Landslides are events that cause great impact in different parts of the world. Their destructive capacity generates loss life and considerable economic damage. In this research, several Machine Learning (ML) methods were explored to select most important conditioning factors, order evaluate susceptibility rotational landslides a sector surrounding city Cuenca (Ecuador) with them elaborate landslide maps (LSM) by means ML. The implemented analyze importance factors checked for...

10.3390/land12061135 article EN cc-by Land 2023-05-27

Landslides are hazardous events that occur mainly in mountainous areas and cause substantial losses of various kinds worldwide; therefore, it is important to investigate them. In this study, a specific Machine Learning (ML) method was further analyzed due the good results obtained previous stage research. The algorithm implemented Extreme Gradient Boosting (XGBoost), which used evaluate susceptibility landslides recorded city Cuenca (Ecuador) its surroundings, generating respective Landslide...

10.3390/a18050258 article EN cc-by Algorithms 2025-04-29

Building and updating tree inventories is a challenging task for city administrators, requiring significant costs the expertise of identification specialists. In Ecuador, only Trees Inventory Cuenca (TIC) contains this information, geolocated integrated with taxonomy, origin, leaf, crown structure, phenological problems, images taken smartphones each tree. From dataset, we selected fourteen classes most information used to train model, using Transfer Learning approach, that could be deployed...

10.3390/f14051050 article EN Forests 2023-05-19

Globally, there is a significant trend in the loss of native forests, including those Polylepis genus, which are essential for soil conservation across Andes Mountain range. These forests play critical role regulating water flow, promoting regeneration, and retaining nutrients sediments, thereby contributing to region. In Ecuador, these often fragmented isolated areas high cloud cover, making it difficult use remote sensing spectral vegetation indices detect this forest species. This study...

10.3390/rs16224271 article EN cc-by Remote Sensing 2024-11-16

Landslide occurrence in Colombia is very frequent due to its geographical location the Andean mountain range, with a pronounced orography, significant geological complexity and an outstanding climatic variability. More specifically, study area around Bogotá-Villavicencio road central sector of Eastern Cordillera one regions highest concentration phenomena, which makes priority. An inventory detailed analysis 2506 landslides has been carried out, five basic typologies have differentiated:...

10.3390/rs15153870 article EN cc-by Remote Sensing 2023-08-04

RESUMENLa presente investigación consiste en el análisis de una problemática relacionada con los siniestros tránsito que afectan a la población ciudad Cuenca, Ecuador, generando cuantiosos daños, inseguridad vial y, peor aún, pérdida vidas.Debido siniestralidad suele ser categorizada, se planteó como objetivo esta investigación, choques vehículos (con heridos y sin heridos) nivel espacio-temporal durante periodo 2018-2020 (por año) bianual 2019-2020.Se utilizaron diversas herramientas...

10.21138/gf.785 article ES cc-by-nc-nd GeoFocus Revista Internacional de Ciencia y Tecnología de la Información Geográfica 2022-12-30

La importancia del espacio radica en que todos los eventos ocurren nuestro planeta están ligados a una ubicación, no solo espacial sino también temporal; es decir, todo ocurre algún lugar y momento dado. Ante esto, necesario identificar las propiedades relevantes de estos eventos. Estas se relacionan tanto con objetos mundo real como relaciones espaciales entre ellos. En el contexto análisis datos espaciales, la dependencia valores atributos considera propiedad fundamental determina por...

10.33324/uv.v1i78.351 article ES Revista Universidad Verdad/Universidad verdad/Universidad-verdad 2021-06-23

La importancia del espacio radica en que todos los eventos ocurren nuestro planeta, están ligados a una ubicación no solo espacial, sino también temporal; es decir, todo ocurre algún lugar y momento dado. Ante esto, necesario identificar las propiedades relevantes de estos eventos. Estas se relacionan tanto con objetos mundo real como relaciones espaciales entre ellos. En el contexto análisis datos espaciales, la dependencia espacial valores atributos considera propiedad fundamental...

10.33324/uv.v1i1.351 article ES Revista Universidad Verdad/Universidad verdad/Universidad-verdad 2021-06-23
Coming Soon ...