C. Macolino

ORCID: 0000-0003-2517-6574
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Dark Matter and Cosmic Phenomena
  • Particle physics theoretical and experimental studies
  • Neutrino Physics Research
  • Astrophysics and Cosmic Phenomena
  • Atomic and Subatomic Physics Research
  • Particle Detector Development and Performance
  • Nuclear physics research studies
  • Radiation Detection and Scintillator Technologies
  • Cosmology and Gravitation Theories
  • Radio Astronomy Observations and Technology
  • Gamma-ray bursts and supernovae
  • Atmospheric Ozone and Climate
  • Atmospheric aerosols and clouds
  • Quantum Chromodynamics and Particle Interactions
  • Scientific Research and Discoveries
  • Quantum, superfluid, helium dynamics
  • Computational Physics and Python Applications
  • Photocathodes and Microchannel Plates
  • Muon and positron interactions and applications
  • High-Energy Particle Collisions Research
  • Nuclear Physics and Applications
  • Precipitation Measurement and Analysis
  • Atmospheric chemistry and aerosols
  • Radioactive Decay and Measurement Techniques
  • Gaussian Processes and Bayesian Inference

Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso
2015-2025

Gran Sasso Science Institute
2014-2025

University of L'Aquila
2007-2025

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie
2020-2023

Institut National de Physique Nucléaire et de Physique des Particules
2011-2023

Centre National de la Recherche Scientifique
2011-2023

Université Paris-Saclay
2017-2023

Leibniz Institute for Crystal Growth
2023

Technische Universität Dresden
2023

Istituto Nazionale di Fisica Nucleare
2008-2022

Neutrinoless double beta decay is a process that violates lepton number conservation. It predicted to occur in extensions of the standard model particle physics. This Letter reports results from phase I Germanium Detector Array (GERDA) experiment at Gran Sasso Laboratory (Italy) searching for neutrinoless isotope $^{76}\mathrm{Ge}$. Data considered present analysis have been collected between November 2011 and May 2013 with total exposure 21.6 kg yr. A blind performed. The background index...

10.1103/physrevlett.111.122503 article EN Physical Review Letters 2013-09-19

We report results from searches for new physics with low-energy electronic recoil data recorded the XENON1T detector. With an exposure of 0.65 tonne-years and unprecedentedly low background rate 76±2stat events/(tonne×year×keV) between 1 30 keV, enable one most sensitive solar axions, enhanced neutrino magnetic moment using neutrinos, bosonic dark matter. An excess over known backgrounds is observed at energies prominent 2 3 keV. The axion model has a 3.4σ significance, three-dimensional 90%...

10.1103/physrevd.102.072004 article EN cc-by Physical review. D/Physical review. D. 2020-10-12

We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22±3) tonne day. Above ∼0.4 keV_{ee}, we observe <1 event/(tonne day keV_{ee}), which is more 1000 times lower similar searches other detectors. Despite observing higher rate at energies, no DM or CEvNS detection may be claimed because cannot model all our...

10.1103/physrevlett.123.251801 article EN cc-by Physical Review Letters 2019-12-17

XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict experimental background and project sensitivity to weakly interacting massive particles (WIMPs). The expected average differential rate in energy region interest, corresponding (1, 13) keV (4, 50) for electronic nuclear recoils, amounts $12.3 \pm 0.6$ (keV y)$^{-1}$ $(2.2\pm 0.5)\times 10^{-3}$ y)$^{-1}$,...

10.1088/1475-7516/2020/11/031 article EN Journal of Cosmology and Astroparticle Physics 2020-11-01

The GERmanium Detector Array (GERDA) experiment searched for the lepton-number-violating neutrinoless double-$\beta$ ($0\nu\beta\beta$) decay of $^{76}$Ge, whose discovery would have far-reaching implications in cosmology and particle physics. By operating bare germanium diodes, enriched an active liquid argon shield, GERDA achieved unprecedently low background index $5.2\times10^{-4}$ counts/(keV$\cdot$kg$\cdot$yr) signal region met design goal to collect exposure 100 kg$\cdot$yr a...

10.1103/physrevlett.125.252502 article EN cc-by Physical Review Letters 2020-12-17

The GERDA experiment searches for the lepton-number-violating neutrinoless double-β decay of ^{76}Ge (^{76}Ge→^{76}Se+2e^{-}) operating bare Ge diodes with an enriched fraction in liquid argon. exposure broad-energy germanium type (BEGe) detectors is increased threefold respect to our previous data release. BEGe feature excellent background suppression from analysis time profile detector signals. In window a level 1.0_{-0.4}^{+0.6}×10^{-3} counts/(keV kg yr) has been achieved; if normalized...

10.1103/physrevlett.120.132503 article EN Physical Review Letters 2018-03-26

We report on the first search for nuclear recoils from dark matter in form of weakly interacting massive particles (WIMPs) with XENONnT experiment, which is based a two-phase time projection chamber sensitive liquid xenon mass 5.9 ton. During (1.09±0.03) ton yr exposure used this search, intrinsic ^{85}Kr and ^{222}Rn concentrations target are reduced to unprecedentedly low levels, giving an electronic recoil background rate (15.8±1.3) events/ton keV region interest. A blind analysis events...

10.1103/physrevlett.131.041003 article EN cc-by Physical Review Letters 2023-07-28

We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from XENON1T dark matter search experiment. The analysis uses full ton year exposure of to constrain proton-only and neutron-only cases. No significant signal excess is observed, a profile likelihood ratio used set exclusion limits WIMP-nucleon interactions. This includes most stringent constraint date WIMP-neutron cross section, with minimum 6.3×10^{-42} cm^{2} at...

10.1103/physrevlett.122.141301 article EN publisher-specific-oa Physical Review Letters 2019-04-08

Direct dark matter detection experiments based on a liquid xenon target are leading the search for particles with masses above $\sim$ 5 GeV/c$^2$, but have limited sensitivity to lighter because of small momentum transfer in matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying scattering, which leads excitation and ionization recoiling atom (the Migdal effect) or emission Bremsstrahlung photon. In this letter, we report probe...

10.1103/physrevlett.123.241803 article EN cc-by Physical Review Letters 2019-12-13

We report on a blinded analysis of low-energy electronic-recoil data from the first science run XENONnT dark matter experiment. Novel subsystems and increased 5.9 tonne liquid xenon target reduced background in (1, 30) keV search region to $(15.8 \pm 1.3)$ events/(tonne$\times$year$\times$keV), lowest ever achieved detector $\sim$5 times lower than XENON1T. With an exposure 1.16 tonne-years, we observe no excess above set stringent new limits solar axions, enhanced neutrino magnetic moment,...

10.1103/physrevlett.129.161805 article EN cc-by Physical Review Letters 2022-10-13

Delayed single- and few-electron emissions plague dual-phase time projection chambers, limiting their potential to search for light-mass dark matter. This paper examines the origins of these events in XENON1T experiment. Characterization intensity delayed electron backgrounds shows that resulting are correlated, position, with high-energy can effectively be vetoed. In this work we extend previous S2-only analyses down a single electron. From analysis, after removing correlated backgrounds,...

10.1103/physrevd.106.022001 article EN cc-by Physical review. D/Physical review. D. 2022-07-05

We present the first measurement of nuclear recoils from solar <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:mmultiscripts><a:mrow><a:mi mathvariant="normal">B</a:mi></a:mrow><a:mprescripts/><a:none/><a:mrow><a:mn>8</a:mn></a:mrow></a:mmultiscripts></a:mrow></a:math> neutrinos via coherent elastic neutrino-nucleus scattering with XENONnT dark matter experiment. The central detector is a low-background, two-phase time projection chamber 5.9 t sensitive...

10.1103/physrevlett.133.191002 article EN cc-by Physical Review Letters 2024-11-07

A discovery that neutrinos are not the usual Dirac but Majorana fermions, i.e. identical to their antiparticles, would be a manifestation of new physics with profound implications for particle and cosmology. generate neutrinoless double-$\beta$ ($0\nu\beta\beta$) decay, matter-creating process without balancing emission antimatter. So far, 0$\nu\beta\beta$ decay has eluded detection. The GERDA collaboration searches $0\nu\beta\beta$ $^{76}$Ge by operating bare germanium detectors in an...

10.1126/science.aav8613 article EN Science 2019-09-05

We report on a search for nuclear recoil signals from solar $^8$B neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold 2.6 keV to 1.6 keV. develop variety of novel techniques limit resulting increase backgrounds near threshold. No significant neutrino-like excess is found an exposure 0.6 t $\times$ y. For first time, we use non-detection constrain light yield 1-2 recoils liquid xenon, as well non-standard neutrino-quark interactions. Finally,...

10.1103/physrevlett.126.091301 article EN cc-by Physical Review Letters 2021-03-01

The XENON1T experiment searches for dark matter particles through their scattering off xenon atoms in a 2 tonne liquid target. detector is dual-phase time projection chamber, which measures simultaneously the scintillation and ionization signals produced by interactions target volume, to reconstruct energy position, as well type of interaction. background rate central volume lowest achieved so far with xenon-based direct detection experiment. In this work we describe response model detector,...

10.1103/physrevd.99.112009 article EN publisher-specific-oa Physical review. D/Physical review. D. 2019-06-27

We search for dark matter (DM) with a mass [3,12] GeV/c^{2} using an exposure of 3.51 tonne year the XENONnT experiment. consider spin-independent DM-nucleon interactions mediated by heavy or light mediator, spin-dependent DM-neutron interactions, momentum-dependent DM scattering, and mirror DM. Using lowered energy threshold compared to previous weakly interacting massive particle search, blind analysis [0.5, 5.0] keV nuclear recoil events reveals no significant signal excess over...

10.1103/physrevlett.134.111802 article EN cc-by Physical Review Letters 2025-03-20

A search for neutrinoless $\beta\beta$ decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at Laboratori Nazionali del Gran Sasso INFN (Italy). Processes spectral indices n = 1, 2, 3, 7 were searched for. No signals found and lower limits order 10$^{23}$ yr on their half-lives derived, yielding substantially improved results compared to previous experiments $^{76}$Ge. new result half-life...

10.1140/epjc/s10052-015-3627-y article EN cc-by The European Physical Journal C 2015-09-01

The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double beta decay 76Ge. signature signal a monoenergetic peak 2039 keV, Q-value decay, Q_bb. To avoid bias in search, present analysis does not consider all those events, that fall 40 keV wide region centered around main parameters needed are described. A background model was developed to describe observed energy spectrum. contains several contributions,...

10.1140/epjc/s10052-014-2764-z article EN cc-by The European Physical Journal C 2014-04-01

The GERDA experiment located at the LNGS searches for neutrinoless double beta (0\nu\beta\beta) decay of ^{76}Ge using germanium diodes as source and detector. In Phase I eight semi-coaxial five BEGe type detectors have been deployed. latter is used in this field research first time. All are made from material with enriched fraction. experimental sensitivity can be improved by analyzing pulse shape detector signals aim to reject background events. This paper documents algorithms developed...

10.1140/epjc/s10052-013-2583-7 article EN cc-by The European Physical Journal C 2013-10-01

The GERDA collaboration is performing a sensitive search for neutrinoless double beta decay of $^{76}$Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. upgrade experiment from Phase I to II has been concluded in December 2015. first data release shows that goal suppress background by one order magnitude compared achieved. thus will remain background-free up its design exposure (100 kg yr). It reach thereby half-life sensitivity more than 10$^{26}$ yr within 3 years collection. This...

10.1140/epjc/s10052-018-5812-2 article EN cc-by The European Physical Journal C 2018-05-01

The GERmanium Detector Array (Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for neutrinoless double beta decay ( $$0\nu \beta $$ ) of $$^{76}$$ Ge. Germanium detectors made material with an enriched Ge fraction act simultaneously as sources and this decay. During Phase I theexperiment mainly refurbished semi-coaxial from former experiments were used. For upcoming II, 30 new broad energy germanium (BEGe)-type produced. A subgroup these has already been deployed in Gerda...

10.1140/epjc/s10052-014-3253-0 article EN cc-by The European Physical Journal C 2015-02-01

Abstract Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolution which degrades with above $$\sim $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>∼</mml:mo></mml:math> 200 keV due the saturation effects. This has limited their sensitivity in rare events like neutrinoless double-beta decay of $$^{136} \hbox {Xe}$$...

10.1140/epjc/s10052-020-8284-0 article EN cc-by The European Physical Journal C 2020-08-01

The full data set of the NEMO-3 experiment has been used to measure half-life two-neutrino double beta decay $$^{100}$$ Mo ground state Ru, $$T_{1/2} = \left[ 6.81 \pm 0.01\,\left( \text{ stat }\right) ^{+0.38}_{-0.40}\,\left( syst \right] \times 10^{18}$$ year. two-electron energy sum, single electron spectra and distribution angle between electrons are presented with an unprecedented statistics $$5\times 10^5$$ events a signal-to-background ratio $$\sim $$ 80. Clear evidence for Single...

10.1140/epjc/s10052-019-6948-4 article EN cc-by The European Physical Journal C 2019-05-01

The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is most sensitive direct detection for dark matter in form of weakly interacting particles (WIMPs) with masses above $6\text{ }\text{ }\mathrm{GeV}/{c}^{2}$ scattering off nuclei. detector employs a dual-phase time projection chamber 2.0 metric tons liquid xenon target. A one $\text{metric}\text{ }\text{ton}\ifmmode\times\else\texttimes\fi{}\mathrm{year}$ exposure science data was collected between October 2016 and February...

10.1103/physrevd.100.052014 article EN Physical review. D/Physical review. D. 2019-09-25
Coming Soon ...