Jeremy Schwend

ORCID: 0000-0003-2810-8219
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Advanced Harmonic Analysis Research
  • Spectral Theory in Mathematical Physics
  • Geometry and complex manifolds
  • Nonlinear Partial Differential Equations
  • Geometric Analysis and Curvature Flows
  • Mathematical Dynamics and Fractals
  • Analytic Number Theory Research
  • Advanced Mathematical Modeling in Engineering
  • Mathematical Approximation and Integration
  • Mathematical Analysis and Transform Methods
  • European Socioeconomic and Political Studies

University of Georgia
2019-2024

University of Wisconsin–Madison
2020

We expand the class of curves $(φ_1(t),φ_2(t)),\ t\in[0,1]$ for which $\ell^2$ decoupling conjecture holds $2\leq p\leq 6$. Our includes all real-analytic regular with isolated points vanishing curvature and form $(t,t^{1+ν})$ $ν\in (0,\infty)$.

10.48550/arxiv.1812.04760 preprint EN other-oa arXiv (Cornell University) 2018-01-01

We expand the class of curves <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis phi 1 left-parenthesis t right-parenthesis comma 2 element-of left-bracket 0 right-bracket"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mi>φ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>t</mml:mi> stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mtext> </mml:mtext>...

10.1090/proc/14954 article EN publisher-specific-oa Proceedings of the American Mathematical Society 2020-01-15

10.1007/s00208-021-02202-w article EN Mathematische Annalen 2021-05-14

In this article, we study the problem of obtaining Lebesgue space inequalities for Fourier restriction operator associated to rectangular pieces paraboloid and perturbations thereof. We state a conjecture dependence norms in these on sidelengths rectangles, prove that follows from (a slight reformulation the) elliptic hypersurfaces, that, if valid, is essentially sharp. Such questions arise naturally degenerate hypersurfaces; demonstrate connection by using our positive results new class...

10.48550/arxiv.1911.11600 preprint EN other-oa arXiv (Cornell University) 2019-01-01

We find the precise range of $(p,q)$ for which local averages along graphs a class two-variable polynomials in $\mathbb{R}^3$ are restricted weak type $(p,q)$, given hypersurfaces have Euclidean surface measure. derive these results using non-oscillatory, geometric methods, model bearing strong connection to general real-analytic case.

10.48550/arxiv.2012.15789 preprint EN other-oa arXiv (Cornell University) 2020-01-01
Coming Soon ...