Sam Alexander Martino

ORCID: 0000-0003-2813-1777
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • SARS-CoV-2 and COVID-19 Research
  • interferon and immune responses
  • Animal Virus Infections Studies
  • RNA and protein synthesis mechanisms
  • Advanced Graph Neural Networks
  • Viral Infections and Immunology Research
  • Complex Network Analysis Techniques
  • Graph Theory and Algorithms
  • Viral gastroenteritis research and epidemiology
  • thermodynamics and calorimetric analyses
  • Protein Structure and Dynamics
  • Machine Learning in Materials Science
  • Computational Drug Discovery Methods
  • Advanced Clustering Algorithms Research

University College London
2020-2025

King's College London
2020-2021

Oleksandra Herasymenko Madhushika Silva Abd Al‐Aziz A. Abu‐Saleh Ayaz Ahmad Jesus Antonio Alvarado-Huayhuaz and 95 more Oscar E. A. Arce Roly J. Armstrong C.H. Arrowsmith Kelly E. R. Bachta Hartmut Beck Dénes Berta M. Bieniek Vincent Blay Albina Bolotokova Philip E. Bourne Marco Breznik Peter J. Brown Aaron D. G. Campbell Emanuele Carosati Irene Chau D. J. A. Cole Ben Cree Wim Dehaen Katrin Denzinger Karina Machado Ian Dunn Prasannavenkatesh Durai Kristina Edfeldt A.M. Edwards Darren Fayne Kallie Friston Pegah Ghiabi Elisa Gibson Judith Guenther Anders Gunnarsson Alexander Hillisch Douglas R. Houston Jan H. Jensen Rachel Harding Claire L. Harris Laurent Hoffer Anders Hogner Joshua T. Horton Scott Houliston Judd F. Hultquist Ashley Hutchinson John J. Irwin Marko Jukič Shubhangi Kandwal Andrea Karlova V.L. Katis Ryan P. Kich Dmitri Kireev David Ryan Koes Nicole L. Inniss Uta Lessel Sijie Liu P. Loppnau Wei Lu Sam Alexander Martino Miles McGibbon Jens Meiler Akhila Mettu Sam Money-Kyrle Rocco Moretti Yurii S. Moroz Charuvaka Muvva J.A. Newman Leon Obendorf Brooks Paige Amit Pandit Keunwan Park Sumera Perveen Rachael Pirie Gennady Poda M. V. Protopopov Vera Pütter Federico Ricci Natalie J. Roper Edina Rosta Margarita Rzhetskaya Yogesh Sabnis K.J.F. Satchell Frederico Schmitt Kremer Thomas W. Scott Almagul Seitova Casper Steinmann Valerij Talagayev Olga O. Tarkhanova Natalie J. Tatum Dakota Treleaven Adriano Velasque Werhli W. Patrick Walters Xiaowen Wang Jude Wells Geoffrey Wells Yvonne Westermaier Gerhard Wolber Lars Wortmann Jixian Zhang

A critical assessment of computational hit finding experiments (CACHE) challenge was conducted to predict ligands for the SARS-CoV-2 Nsp13 helicase RNA binding site, a highly conserved COVID-19 target. Twenty-three participating teams comprised chemists and data scientists used protein structure from fragment-screening paired with advanced machine learning methods each up 100 inhibitory ligands. Across all teams, 1957 compounds were predicted subsequently procured commercial catalogs...

10.26434/chemrxiv-2025-8f0rq preprint EN cc-by 2025-03-04
Oleksandra Herasymenko Madhushika Silva Abd Al‐Aziz A. Abu‐Saleh Ayaz Ahmad Jesus Antonio Alvarado-Huayhuaz and 95 more Oscar E. A. Arce Roly J. Armstrong C. Arrowsmith Kelly E. R. Bachta Hartmut Beck Dénes Berta M. Bieniek Vincent Blay Albina Bolotokova Philip E. Bourne Marco Breznik Peter J. Brown Aaron D. G. Campbell Emanuele Carosati Irene Chau D. J. A. Cole Ben Cree Wim Dehaen Katrin Denzinger Karina Machado Ian Dunn Prasannavenkatesh Durai Kristina Edfeldt A.M. Edwards Darren Fayne Kallie Friston Pegah Ghiabi Elisa Gibson Judith Günther Anders Gunnarsson Alexander Hillisch Douglas R. Houston Jan H. Jensen Rachel Harding Claire L. Harris Laurent Hoffer Anders Hogner Joshua T. Horton Scott Houliston Judd F. Hultquist Ashley Hutchinson John J. Irwin Marko Jukič Shubhangi Kandwal Andrea Karlova V.L. Katis Ryan P. Kich Dmitri Kireev David Ryan Koes Nicole L. Inniss Uta Lessel Sijie Liu P. Loppnau Wei Lu Sam Alexander Martino Miles McGibbon Jens Meiler Akhila Mettu Sam Money-Kyrle Rocco Moretti Yurii S. Moroz Charuvaka Muvva J.A. Newman Leon Obendorf Brooks Paige Amit Pandit Keunwan Park Sumera Perveen Rachael Pirie Gennady Poda M. V. Protopopov Vera Pütter Federico Ricci Natalie J. Roper Edina Rosta Margarita Rzhetskaya Yogesh Sabnis K.J.F. Satchell Frederico Schmitt Kremer T. W. Scott Almagul Seitova Casper Steinmann Valerij Talagayev Olga O. Tarkhanova Natalie J. Tatum Dakota Treleaven Adriano Velasque Werhli W. Patrick Walters Xiaowen Wang Jude Wells Geoffrey Wells Yvonne Westermaier Gerhard Wolber Lars Wortmann Jixian Zhang

A critical assessment of computational hit finding experiments (CACHE) challenge was conducted to predict ligands for the SARS-CoV-2 Nsp13 helicase RNA binding site, a highly conserved COVID-19 target. Twenty-three participating teams comprised chemists and data scientists used protein structure from fragment-screening paired with advanced machine learning methods each up 100 inhibitory ligands. Across all teams, 1957 compounds were predicted subsequently procured commercial catalogs...

10.26434/chemrxiv-2025-8f0rq-v2 preprint EN cc-by 2025-03-05
Oleksandra Herasymenko Madhushika Silva Abd Al‐Aziz A. Abu‐Saleh Ayaz Ahmad Jesus Antonio Alvarado-Huayhuaz and 95 more Oscar E. A. Arce Roly J. Armstrong C. Arrowsmith Kelly E. R. Bachta Hartmut Beck Dénes Berta M. Bieniek Vincent Blay Albina Bolotokova Philip E. Bourne Marco Breznik Peter J. Brown Aaron D. G. Campbell Emanuele Carosati Irene Chau D. J. A. Cole Ben Cree Wim Dehaen Katrin Denzinger Karina Machado Ian Dunn Prasannavenkatesh Durai Kristina Edfeldt A.M. Edwards Darren Fayne Kallie Friston Pegah Ghiabi Elisa Gibson Judith Günther Anders Gunnarsson Alexander Hillisch Douglas R. Houston Jan H. Jensen Rachel Harding Claire L. Harris Laurent Hoffer Anders Hogner Joshua T. Horton Scott Houliston Judd F. Hultquist Ashley Hutchinson John J. Irwin Marko Jukič Shubhangi Kandwal Andrea Karlova V.L. Katis Ryan P. Kich Dmitri Kireev David Ryan Koes Nicole L. Inniss Uta Lessel Sijie Liu P. Loppnau Wei Lu Sam Alexander Martino Miles McGibbon Jens Meiler Akhila Mettu Sam Money-Kyrle Rocco Moretti Yurii S. Moroz Charuvaka Muvva J.A. Newman Leon Obendorf Brooks Paige Amit Pandit Keunwan Park Sumera Perveen Rachael Pirie Gennady Poda M. V. Protopopov Vera Pütter Federico Ricci Natalie J. Roper Edina Rosta Margarita Rzhetskaya Yogesh Sabnis K.J.F. Satchell Frederico Schmitt Kremer T. W. Scott Almagul Seitova Casper Steinmann Valerij Talagayev Olga O. Tarkhanova Natalie J. Tatum Dakota Treleaven Adriano Velasque Werhli W. Patrick Walters Xiaowen Wang Jude Wells Geoffrey Wells Yvonne Westermaier Gerhard Wolber Lars Wortmann Jixian Zhang

A critical assessment of computational hit finding experiments (CACHE) challenge was conducted to predict ligands for the SARS-CoV-2 Nsp13 helicase RNA binding site, a highly conserved COVID-19 target. Twenty-three participating teams comprised chemists and data scientists used protein structure from fragment-screening paired with advanced machine learning methods each up 100 inhibitory ligands. Across all teams, 1957 compounds were predicted subsequently procured commercial catalogs...

10.26434/chemrxiv-2025-8f0rq-v3 preprint EN cc-by 2025-03-06

The RNA helicase (non-structural protein 13, NSP13) of SARS-CoV-2 is essential for viral replication, and it highly conserved among the coronaviridae family, thus a prominent drug target to treat COVID-19. We present here structural models dynamics in complex with its native substrates based on thorough analysis homologous sequences existing experimental structures. performed analysed microseconds molecular (MD) simulations, our model provides valuable insights binding ATP ssRNA at atomic...

10.1039/d1sc02775a article EN cc-by Chemical Science 2021-01-01

SARS-CoV-2 nsp13 is a multifunctional helicase from superfamily 1B. It unwinds the viral RNA genome for replication and thought to play role in 5' mRNA capping produce mature using its triphosphatase activity. The sequence structure are highly conserved nidovirales protein essential infection cycle, acting as standalone enzyme conjunction with other proteins, making promising target structure-based drug design. By inhibiting activity, phosphatase or interaction RNA-dependent polymerase we...

10.1080/0889311x.2024.2309494 article EN Crystallography Reviews 2023-10-02

The recent trend in using network and graph structures to represent a variety of different data types has renewed interest the partitioning (GP) problem. This stems from need for general methods that can both efficiently identify communities reduce dimensionality large graphs while satisfying various application-specific criteria. Traditional clustering algorithms often struggle capture complex relationships within generalize arbitrary emergence neural networks (GNNs) as powerful framework...

10.1021/acs.jpcb.3c08213 article EN cc-by The Journal of Physical Chemistry B 2024-08-15

ABSTRACT Having claimed over 1 million lives worldwide to date, the ongoing COVID-19 pandemic has created one of biggest challenges develop an effective drug treat infected patients. Among all proteins expressed by virus, RNA helicase is a fundamental protein for viral replication, and it highly conserved among coronaviridae family. To there no high-resolution structure bound with ATP RNA. We present here structural insights molecular dynamics (MD) simulation results SARS-CoV-2 both in its...

10.1101/2020.11.03.366609 preprint EN bioRxiv (Cold Spring Harbor Laboratory) 2020-11-03

Traditional clustering algorithms often struggle to capture the complex relationships within graphs and generalise arbitrary criteria. The emergence of graph neural networks (GNNs) as a powerful framework for learning representations data provides new approaches solving problem. Previous work has shown GNNs be capable proposing partitionings using variety criteria, however, these have not yet been extended on Markov chains or kinetic networks. These arise frequently in study molecular...

10.48550/arxiv.2312.14847 preprint EN cc-by arXiv (Cornell University) 2023-01-01
Coming Soon ...