Lintao Liu

ORCID: 0000-0003-3416-0195
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Nonlinear Partial Differential Equations
  • Advanced Mathematical Physics Problems
  • Nonlinear Differential Equations Analysis
  • Advanced Mathematical Modeling in Engineering
  • Numerical methods in inverse problems
  • Fractional Differential Equations Solutions
  • Stability and Controllability of Differential Equations
  • Spectral Theory in Mathematical Physics
  • Advanced Numerical Methods in Computational Mathematics
  • Optimization and Variational Analysis

Central South University
2020-2024

Taiyuan University of Technology
2021

Abstract This paper focuses on the constraint minimization problem associated with fractional Kirchhoff equation <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign="left"> <mml:mtr <mml:mtd <mml:mo>(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>+</mml:mo> <mml:mi>b</mml:mi> <mml:mstyle displaystyle="true"> <mml:msub> <mml:mo>∫</mml:mo> <mml:msup> <mml:mi>ℝ</mml:mi> <mml:mi>N</mml:mi> </mml:msup> </mml:mrow> </mml:msub>...

10.1088/1361-6544/adbc3b article EN Nonlinearity 2025-03-12

In this paper, we study the following fractional Kirchhoff equation (a+b∫R3|(−Δ)s2u|2dx)(−Δ)su=λu+μ|u|q−2u+|u|p−2uinR3,with a prescribed mass ∫R3|u|2dx=c2,where s∈(34,1), a, b, c>0, 2<q<p<2s∗=63−2s, μ>0 and λ∈R as Lagrange multiplier. By decomposing Pohozaev set constructing fiber map, existence properties of normalized ground states are established.

10.1080/00036811.2021.1979222 article EN Applicable Analysis 2021-09-16

In this paper, we are concerned with a fractional Kirchhoff equation general coercive potential. First, consider some existence and nonexistence of L2-constraint minimizers for related constrained minimization problems. Most importantly, by constructing appropriate trial functions delicate energy estimates studying decay properties solution sequences, then establish the concentration behaviors

10.1063/5.0157267 article EN Journal of Mathematical Physics 2023-08-01

We consider $L^{2}$ -constraint minimizers of the mass critical fractional Schrödinger energy functional with a ring-shaped potential $V(x)=(|x|-M)^{2}$ , where $M&gt;0$ and $x\in \mathbb {R}^{2}$ . By analysing some new estimates on least functional, we obtain concentration behaviour each minimizer when $a\nearrow a^{\ast }=\|Q\|_{2}^{2s}$ $Q$ is unique positive radial solution $(-\Delta )^{s}u+su-|u|^{2s}u=0$ in $\mathbb

10.1017/prm.2022.81 article EN Proceedings of the Royal Society of Edinburgh Section A Mathematics 2022-12-14

&lt;abstract&gt;&lt;p&gt;This paper was concerned with the following Kirchhoff type equation involving fractional Laplace operator $ (-\Delta)^{s} $&lt;/p&gt; &lt;p&gt;&lt;disp-formula&gt; &lt;label/&gt; &lt;tex-math id="FE1"&gt; \begin{document}$ \begin{cases} \left(1+\alpha\int_{\mathbb{R}^{3}}|(-\Delta)^{\frac{s}{2}}u|^{2}dx\right)(-\Delta)^{s} u+\mu K(x)u = g(x)|u|^{p-2}u, &amp;amp;{\rm in}\ \mathbb{R}^{3}, \\ u\in H^{s}(\mathbb{R}^{3}), \ \end{cases} $\end{document}...

10.3934/math.2024406 article EN cc-by AIMS Mathematics 2024-01-01

10.1016/j.jde.2024.11.053 article FR Journal of Differential Equations 2024-12-04

10.1007/s40314-023-02531-3 article EN Computational and Applied Mathematics 2023-12-16

In this paper, we study the following nonlinear Schrödinger-Bopp-Podolsky system: -, where p,q [?] (4,6), μ > 0, l(x), a(x) and b(x) are nonnegative continuous functions.Under some certain assumptions, prove above system have ground state multiple solutions by using variational.

10.22541/au.160252383.37333229/v1 preprint EN Authorea (Authorea) 2020-10-12

In this article, we study a class of critical fractional Schrodinger-Poisson system with two perturbation terms. By using variational methods and Lusternik-Schnirelman category theory, the existence ground state nontrivial solutions are established.&#x0D; For more information see https://ejde.math.txstate.edu/Volumes/2021/07/abstr.html

10.58997/ejde.2021.07 article EN cc-by Electronic Journal of Differential Equations 2021-02-01

In this paper, we study the following fractional Schrödinger–Poisson system where is Riesz potential, . By using a monotonicity trick and global compactness lemma, obtain existence of ground state solution for above system.

10.1002/mma.9517 article EN Mathematical Methods in the Applied Sciences 2023-07-06

In this paper, we study the following nonlinear fractional Schrödinger-Poisson system <p class="disp_formula">$\begin{equation*}\left\{\begin{array}{ll}(-\Delta)^{s}u+\lambda V(x)u+\mu\phi u=|u|^{p-2}u, &amp; \hbox{in}\; \mathbb{R}^3 , \\(-\Delta)^{s}\phi=u^{2}, \mathbb{R}^3, \end{array}\right.\end{equation*}$ where <inline-formula><tex-math id="M1">\begin{document}$s\in(\frac{3}{4}, 1)$\end{document}</tex-math></inline-formula>, id="M2">\begin{document}$...

10.11948/20220378 article EN Journal of Applied Analysis & Computation 2023-01-01

In this paper, we study the following fractional Schrödinger-Poisson system, and 2 * s = 6 3-2s is critical Sobolev exponent.By using a monotonicity argument global compactness lemma, obtain existence of ground state solution for system.

10.23952/jnva.8.2024.1.04 article EN Journal of Nonlinear and Variational Analysis 2023-01-01

In this paper, we study the existence and asymptotic properties of solutions to following fractional Kirchhoff equation \begin{equation*} \left(a+b\int_{\mathbb{R}^{3}}|(-Δ)^{\frac{s}{2}}u|^{2}dx\right)(-Δ)^{s}u=λu+μ|u|^{q-2}u+|u|^{p-2}u \quad \hbox{in $\mathbb{R}^3$,} \end{equation*} with a prescribed mass \int_{\mathbb{R}^{3}}|u|^{2}dx=c^{2}, where $s\in(0, 1)$, $a, b, c&gt;0$, $20$ $λ\in\mathbb{R}$ as Lagrange multiplier. Under different assumptions on $q0$ $μ&gt;0$, prove some results...

10.48550/arxiv.2104.06053 preprint EN other-oa arXiv (Cornell University) 2021-01-01
Coming Soon ...