Yongxiao Lin

ORCID: 0000-0003-4597-6763
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Analytic Number Theory Research
  • Advanced Algebra and Geometry
  • Finite Group Theory Research
  • Advanced Mathematical Identities
  • Algebraic Geometry and Number Theory
  • Coding theory and cryptography
  • Limits and Structures in Graph Theory
  • Algebraic and Geometric Analysis
  • Analytic and geometric function theory
  • Historical Geopolitical and Social Dynamics
  • Historical Studies and Socio-cultural Analysis
  • advanced mathematical theories
  • Advanced Harmonic Analysis Research

Shandong University
2020-2023

École Polytechnique Fédérale de Lausanne
2019-2022

The Ohio State University
2016-2021

Abstract In this paper, we prove strong subconvexity bounds for self-dual $\textrm {GL}(3)\ L$-functions in the $t$-aspect and {GL}(3)\times \textrm {GL}(2)$$L$-functions {GL}(2)$-spectral aspect. The are sense that they natural limit of moment method pioneered by Xiaoqing Li, modulo current knowledge on estimate second {GL}(3)$$L$-functions critical line.

10.1093/imrn/rnac153 article EN International Mathematics Research Notices 2022-06-13

Abstract In this paper, we introduce a simple Bessel $\delta $-method to the theory of exponential sums for $\textrm{GL}_2$. Some results Jutila on are generalized in less technical manner holomorphic newforms arbitrary level and nebentypus. particular, gives short proof Weyl-type subconvex bound $t$-aspect associated $L$-functions.

10.1093/qmathj/haaa026 article EN The Quarterly Journal of Mathematics 2020-07-08

We prove that the coefficients of a ${\rm GL}_3\times{\rm GL}_2$ Rankin--Selberg $L$-function do not correlate with wide class trace functions small conductor modulo primes, generalizing corresponding result Fouvry, Kowalski, and Michel for Lin, Michel, Sawin GL}_3$. This is inspired by recent work P. Sharma who discussed case Dirichlet character prime modulus.

10.1353/ajm.2023.0015 article EN American Journal of Mathematics 2023-04-01

Let \pi be a fixed Hecke–Maass cusp form for \mathrm{SL}(3,\mathbb{Z}) and \chi primitive Dirichlet character modulo M , which we assume to prime. L(s,\pi\otimes \chi) the L -function associated \pi\otimes . For any given \varepsilon > 0 establish subconvex bound L(1/2+it, \chi)\ll_{\pi, \varepsilon} (M(|t|+1))^{3/4-1/36+\varepsilon} uniformly in both - t -aspects.

10.4171/jems/1046 article EN cc-by Journal of the European Mathematical Society 2021-02-03

10.1007/s11139-016-9874-1 article EN The Ramanujan Journal 2017-01-31

Let $g$ be a fixed Hecke cusp form for $\mathrm{SL}(2,\mathbb{Z})$ and $\chi$ primitive Dirichlet character of conductor $M$. The best known subconvex bound $L(1/2,g\otimes \chi)$ is Burgess strength. was proved by couple methods: shifted convolution sums the Petersson/Kuznetsov formula analysis. It natural to ask what inputs are really needed prove Burgess-type on $\rm GL(2)$. In this paper, we give new proof bounds ${L(1/2,g\otimes \chi)\ll_{g,\varepsilon} M^{1/2-1/8+\varepsilon}}$...

10.48550/arxiv.1803.00542 preprint EN other-oa arXiv (Cornell University) 2018-01-01

Let $\pi$ be a fixed Hecke--Maass cusp form for $\mathrm{SL}(3,\mathbb{Z})$ and $\chi$ primitive Dirichlet character modulo $M$, which we assume to prime. $L(s,\pi\otimes \chi)$ the $L$-function associated $\pi\otimes \chi$. In this paper, any given $\varepsilon>0$, establish subconvex bound $L(1/2+it, \pi\otimes \chi)\ll_{\pi, \varepsilon} (M(|t|+1))^{3/4-1/36+\varepsilon}$, uniformly in both $M$- $t$-aspects.

10.48550/arxiv.1802.05111 preprint EN other-oa arXiv (Cornell University) 2018-01-01

We prove that the coefficients of a $\mathrm{GL}_3\times \mathrm{GL}_2$ Rankin--Selberg $L$-function do not correlate with wide class trace functions small conductor modulo primes, generalizing corresponding result \cite{FKM1} for~$\mathrm{GL}_2$ and \cite{KLMS} for $\mathrm{GL}_3$. This is inspired by recent work P. Sharma who discussed case Dirichlet character prime modulus.

10.48550/arxiv.1912.09473 preprint EN other-oa arXiv (Cornell University) 2019-01-01

Abstract Let $\pi $ be a Hecke–Maass cusp form for $\textrm{SL}_3(\mathbb{Z})$ with normalized Hecke eigenvalues $\lambda _{\pi }(n,r)$. $f$ holomorphic or Maass $\textrm{SL}_2(\mathbb{Z})$ _f(n)$. In this paper, we are concerned obtaining nontrivial estimates the sum $$\begin{align*}& \sum_{r,n\geq 1}\lambda_{\pi}(n,r)\lambda_f(n)e\left(t\,\varphi(r^2n/N)\right)V\left(r^2n/N\right), \end{align*}$$where $e(x)=e^{2\pi ix}$, $V(x)\in \mathcal{C}_c^{\infty }(0,\infty )$, $t\geq 1$ is large...

10.1093/imrn/rnaa348 article EN International Mathematics Research Notices 2020-11-11

We prove that sums of length about $q^{3/2}$ Hecke eigenvalues automorphic forms on $\operatorname{SL}_{3}(\mathbf{Z})$ do not correlate with $q$ -periodic functions bounded Fourier transform. This generalizes the earlier results Munshi and Holowinsky–Nelson, corresponding to multiplicative Dirichlet characters, applies, in particular, trace small conductor modulo primes.

10.1017/fms.2020.7 article EN cc-by-nc-nd Forum of Mathematics Sigma 2020-01-01

We prove strong hybrid subconvex bounds simultaneously in the $q$ and $t$ aspects for $L$-functions of selfdual $\mathrm{GL}_3$ cusp forms twisted by primitive Dirichlet characters. additionally analogous central values certain $\mathrm{GL}_3 \times \mathrm{GL}_2$ Rankin-Selberg $L$-functions. The that we obtain are sense that, modulo current knowledge on estimates second moment $L$-functions, they natural limit first method pioneered Li Blomer. proof relies an explicit \mathrm{GL}_2...

10.48550/arxiv.2408.00596 preprint EN arXiv (Cornell University) 2024-08-01

We treat an unbalanced shifted convolution sum of Fourier coefficients cusp forms. As a consequence, we obtain upper bound for correlation three Hecke eigenvalues holomorphic forms $\sum_{H\leq h\leq 2H}W\big(\frac{h}{H}\big)\sum_{X\leq n\leq 2X}λ_{1}(n-h)λ_{2}(n)λ_{3}(n+h)$, which is nontrivial provided that $H\geq X^{2/3+\varepsilon}$. The result can be viewed as cuspidal analogue recent Blomer on triple correlations divisor functions.

10.48550/arxiv.1607.02956 preprint EN other-oa arXiv (Cornell University) 2016-01-01

10.1007/s11139-023-00789-z article EN The Ramanujan Journal 2023-10-17

Let $(λ_f(n))_{n\geq 1}$ be the Hecke eigenvalues of either a holomorphic eigencuspform or Hecke-Maass cusp form $f$. We prove that, for any fixed $η>0$, under Ramanujan-Petersson conjecture $\rm GL_2$ Maass forms, Rankin-Selberg coefficients $(λ_f(n)^2)_{n\geq admit level distribution $θ=2/5+1/260-η$ in arithmetic progressions.

10.48550/arxiv.2304.08231 preprint EN cc-by arXiv (Cornell University) 2023-01-01

We study bounds for algebraic twists sums of automorphic coefficients by trace functions composite moduli.

10.48550/arxiv.2304.08149 preprint EN cc-by arXiv (Cornell University) 2023-01-01

Let $λ_g (n)$ be the Fourier coefficients of a holomorphic cusp modular form $g$ for $\mathrm{SL}_2 (\mathbb{Z})$. The aim this article is to get non-trivial bound on non-linearly additively twisted sums (n)$. Precisely, we prove any $3/4 < β< 3/2$, $β\neq 1 $, following estimate $$ \sum_{n \leq N}λ_g(n)\,e(α\, n^β)\ll_{g, α, β, \varepsilon} N^{\frac{1}{2}+ \fracβ{3} +\varepsilon} + N^{\frac{3}{2}-\frac {2β}{3} \varepsilon}, $\varepsilon > 0$. This first time that such achieved $1...

10.48550/arxiv.1906.06371 preprint EN other-oa arXiv (Cornell University) 2019-01-01

In this paper, we introduce a simple Bessel $\delta$-method to the theory of exponential sums for $\rm GL_2$. Some results Jutila on are generalized in less technical manner holomorphic newforms arbitrary level and nebentypus. particular, gives short proof Weyl-type subconvex bound $t$-aspect associated $L$-functions.

10.48550/arxiv.1906.05485 preprint EN other-oa arXiv (Cornell University) 2019-01-01

We prove that sums of length about $q^{3/2}$ Hecke eigenvalues automorphic forms on $SL_3(\Zz)$ do not correlate with $q$-periodic functions bounded Fourier transform. This generalizes the earlier results Munshi and Holowinsky--Nelson, corresponding to multiplicative Dirichlet characters, applies in particular trace small conductor modulo primes.

10.48550/arxiv.1905.05080 preprint EN other-oa arXiv (Cornell University) 2019-01-01

In this note, we give a detailed proof of an asymptotic for averages coefficients class degree three $L$-functions which can be factorized as product one and two $L$-functions. We emphasize that break the $1/2$-barrier in error term, get explicit exponent.

10.48550/arxiv.2003.04240 preprint EN other-oa arXiv (Cornell University) 2020-01-01
Coming Soon ...