Angelica Iacovelli
- Artificial Intelligence in Healthcare and Education
- Machine Learning in Healthcare
- Cardiovascular Function and Risk Factors
- Topic Modeling
- ECG Monitoring and Analysis
- COVID-19 diagnosis using AI
Stanford University
2024-2025
0. Abstract Background The integration of large language models (LLMs) in healthcare offers immense opportunity to streamline tasks, but also carries risks such as response accuracy and bias perpetration. To address this, we conducted a red-teaming exercise assess LLMs developed dataset clinically relevant scenarios for future teams use. Methods We convened 80 multi-disciplinary experts evaluate the performance popular across multiple medical scenarios. Teams composed clinicians, engineering...
Red teaming, the practice of adversarially exposing unexpected or undesired model behaviors, is critical towards improving equity and accuracy large language models, but non-model creator-affiliated red teaming scant in healthcare. We convened teams clinicians, medical engineering students, technical professionals (80 participants total) to stress-test models with real-world clinical cases categorize inappropriate responses along axes safety, privacy, hallucinations/accuracy, bias. Six...