H. Thankful Cromartie
- Pulsars and Gravitational Waves Research
- Gamma-ray bursts and supernovae
- Geophysics and Gravity Measurements
- Radio Astronomy Observations and Technology
- SAS software applications and methods
- Astronomical Observations and Instrumentation
- Cosmology and Gravitation Theories
- Astrophysics and Cosmic Phenomena
- Astrophysical Phenomena and Observations
- Particle Accelerators and Free-Electron Lasers
- Advanced Frequency and Time Standards
- Solar and Space Plasma Dynamics
- Galaxies: Formation, Evolution, Phenomena
- Superconducting Materials and Applications
- Atomic and Subatomic Physics Research
- Black Holes and Theoretical Physics
- Astronomy and Astrophysical Research
- High-pressure geophysics and materials
- Stellar, planetary, and galactic studies
- Particle physics theoretical and experimental studies
- Particle Detector Development and Performance
- Superconducting and THz Device Technology
- Geophysics and Sensor Technology
- Seismology and Earthquake Studies
- GNSS positioning and interference
Cornell University
2020-2024
Planetary Science Institute
2021-2024
National Academy of Sciences
2024
National Academies of Sciences, Engineering, and Medicine
2024
United States Naval Research Laboratory
2024
Association for Language Learning
2024
University of Virginia
2015-2023
Campbell Collaboration
2023
National Postdoctoral Association
2022
Albert Einstein College of Medicine
2022
Abstract We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars from the 15 yr pulsar timing data set collected by North American Nanohertz Observatory Gravitational Waves. The correlations follow Hellings–Downs pattern expected gravitational-wave background. presence such background with power-law spectrum favored over model only independent noises Bayes factor in excess 10 14 , and this same an uncorrelated common factors 200–1000, depending on...
PSR J0740$+$6620 has a gravitational mass of $2.08\pm 0.07~M_\odot$, which is the highest reliably determined any neutron star. As result, measurement its radius will provide unique insight into properties star core matter at high densities. Here we report based on fits rotating hot spot patterns to Neutron Star Interior Composition Explorer (NICER) and X-ray Multi-Mirror (XMM-Newton) observations. We find that equatorial circumferential $13.7^{+2.6}_{-1.5}$ km (68%). apply our measurement,...
Abstract We report on Bayesian estimation of the radius, mass, and hot surface regions massive millisecond pulsar PSR J0740+6620, conditional pulse-profile modeling Neutron Star Interior Composition Explorer X-ray Timing Instrument event data. condition informative distance, orbital inclination priors derived from joint North American Nanohertz Observatory for Gravitational Waves Canadian Hydrogen Intensity Mapping Experiment/Pulsar wideband radio timing measurements Fonseca et al. use...
Abstract We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part the North American Nanohertz Observatory Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The were with Arecibo and/or Green Bank Telescope frequencies ranging from 327 MHz 2.3 GHz. Most approximately monthly cadence, six high-timing-precision weekly. All widely separated each observing epoch in order fit...
Abstract The 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) shows positive evidence presence of a low-frequency gravitational-wave (GW) background. In this paper, we investigate potential cosmological interpretations signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, strings, and domain walls. We find that, with exception stable strings field theory origin, all these models can...
We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released $11$-year dataset from North American Nanohertz Observatory Gravitational Waves (NANOGrav). While we find no significant evidence a GWB, place constraints on GWB population of supermassive black-hole binaries, cosmic strings, and primordial GWB. For first time, that upper limits detection statistics are sensitive to Solar System ephemeris (SSE) model used, SSE errors can mimic signal. developed...
We searched for an isotropic stochastic gravitational wave background in the second data release of International Pulsar Timing Array, a global collaboration synthesizing decadal-length pulsar-timing campaigns North America, Europe, and Australia. In our reference search power law strain spectrum form $h_c = A(f/1\,\mathrm{yr}^{-1})^{\alpha}$, we found strong evidence spectrally-similar low-frequency process amplitude $A 3.8^{+6.3}_{-2.5}\times10^{-15}$ spectral index $\alpha -0.5 \pm 0.5$,...
The NANOGrav 15-year data set shows evidence for the presence of a low-frequency gravitational-wave background (GWB). While many physical processes can source such gravitational waves, here we analyze signal as coming from population supermassive black hole (SMBH) binaries distributed throughout Universe. We show that astrophysically motivated models SMBH binary populations are able to reproduce both amplitude and shape observed spectrum. multiple model variations GWB spectrum at our current...
Abstract We present observations and timing analyses of 68 millisecond pulsars (MSPs) comprising the 15 yr data set North American Nanohertz Observatory for Gravitational Waves (NANOGrav). NANOGrav is a pulsar array (PTA) experiment that sensitive to low-frequency gravitational waves (GWs). This NANOGrav’s fifth public release, including both “narrowband” “wideband” time-of-arrival (TOA) measurements corresponding models. have added 21 MSPs extended our baselines by 3 yr, now spanning nearly...
Abstract We search for an isotropic stochastic gravitational-wave background (GWB) in the 12.5 yr pulsar-timing data set collected by North American Nanohertz Observatory Gravitational Waves. Our analysis finds strong evidence of a process, modeled as power law, with common amplitude and spectral slope across pulsars. Under our fiducial model, Bayesian posterior f −2/3 power-law spectrum, expressed characteristic GW strain, has median 1.92 × 10 −15 5%–95% quantiles 1.37–2.67 at reference...
Pulsar timing arrays (PTAs) are galactic-scale gravitational wave detectors. Each individual arm, composed of a millisecond pulsar, radio telescope, and kiloparsecs-long path, differs in its properties but, aggregate, can be used to extract low-frequency (GW) signals. We present noise sensitivity analysis accompany the NANOGrav 15-year data release associated papers, along with an in-depth introduction PTA models. As first step our analysis, we characterize each pulsar set three types white...
Abstract Evidence for a low-frequency stochastic gravitational-wave background has recently been reported based on analyses of pulsar timing array data. The most likely source such is population supermassive black hole binaries, the loudest which may be individually detected in these data sets. Here we present search individual binaries NANOGrav 15 yr set. We introduce several new techniques, enhance efficiency and modeling accuracy analysis. uncovered weak evidence two candidate signals,...
Abstract The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has reported evidence the presence of an isotropic nanohertz gravitational-wave background (GWB) in its 15 yr data set. However, if GWB is produced by a population inspiraling supermassive black hole binary (SMBHB) systems, then predicted to be anisotropic, depending on distribution these systems local Universe and statistical properties SMBHB population. In this work, we search anisotropy using multiple...
ABSTRACT The International Pulsar Timing Array 2nd data release is the combination of sets from worldwide collaborations. In this study, we search for continuous waves: gravitational wave signals produced by individual supermassive black hole binaries in local universe. We consider on circular orbits and neglect evolution orbital frequency over observational span. find no evidence such set sky averaged 95 per cent upper limits their amplitude h95. most sensitive 10 nHz with h95 = 9.1 ×...
Abstract The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational-wave background (GWB). Given that each PTA made different choices in modeling their data, we perform comparison GWB individual noise parameters across results reported from PTAs constitute International Pulsar Timing Array (IPTA). We show despite making choices, there is no significant...
Abstract The NANOGrav 15 yr data provide compelling evidence for a stochastic gravitational-wave (GW) background at nanohertz frequencies. simplest model-independent approach to characterizing the frequency spectrum of this signal consists simple power-law fit involving two parameters: an amplitude A and spectral index γ . In Letter, we consider next logical step beyond minimal model, allowing running (i.e., logarithmic dependence) index, <mml:math...
We report results from continued timing observations of PSR J0740+6620, a high-mass, 2.8-ms radio pulsar in orbit with likely ultra-cool white dwarf companion. Our data set consists combined pulse arrival-time measurements made the 100-m Green Bank Telescope and Canadian Hydrogen Intensity Mapping Experiment telescope. explore significance timing-based phenomena arising general-relativistic dynamics variations dispersion. When using various statistical methods, we find that combining $\sim...
The NANOGrav 15-year data set shows evidence for the presence of a low-frequency gravitational-wave background (GWB). While many physical processes can source such gravitational waves, here we analyze signal as coming from population supermassive black hole (SMBH) binaries distributed throughout Universe. We show that astrophysically motivated models SMBH binary populations are able to reproduce both amplitude and shape observed spectrum. multiple model variations GWB spectrum at our current...
Pulsar timing array collaborations, such as the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), are seeking to detect nanohertz gravitational waves emitted by supermassive black hole binaries formed in aftermath of galaxy mergers. We have searched continuous from individual circular using NANOGrav's recent 12.5-year data set. created new methods accurately model uncertainties on pulsar distances our analysis, and we implemented techniques account a common red noise...
Abstract Recent constraints on neutron star mass and radius have advanced our understanding of the equation state (EOS) cold dense matter. Some them been obtained by modeling pulses three millisecond X-ray pulsars observed Neutron Star Interior Composition Explorer (NICER). Here, we present a Bayesian parameter inference for fourth pulsar, PSR J1231−1411, using same technique with NICER XMM-Newton data. When applying broad mass-inclination prior from radio timing measurements emission region...
Abstract Recently we found compelling evidence for a gravitational-wave background with Hellings and Downs (HD) correlations in our 15 yr data set. These describe gravitational waves as predicted by general relativity, which has two transverse polarization modes. However, more metric theories of gravity can have additional modes, produce different interpulsar correlations. In this work, search the NANOGrav set quadrupolar HD scalar-transverse (ST) We find that are best fit to no significant...
Abstract We present the results of a Bayesian search for gravitational wave (GW) memory in NANOGrav 12.5 yr data set. find no convincing evidence any signals this Bayes factor 2.8 favor model that includes signal and common spatially uncorrelated red noise (CURN) compared to including only CURN. However, further investigation shows disproportionate amount support comes from three dubious pulsars. Using more flexible red-noise these pulsars reduces 1.3. Having found compelling evidence, we go...
Pulsar timing arrays (PTAs) use an array of millisecond pulsars to search for gravitational waves in the nanohertz regime pulse time arrival data. This paper presents rigorous tests PTA methods, examining their consistency across relevant parameter space. We discuss updates 15-year isotropic gravitational-wave background analyses and corresponding code representations. Descriptions internal structure flagship algorithms enterprise ptmcmcsampler are given facilitate understanding likelihood...