- Groundwater flow and contamination studies
- Landslides and related hazards
- Soil and Unsaturated Flow
- Hydrology and Watershed Management Studies
- Coastal and Marine Dynamics
- Hydrology and Sediment Transport Processes
- Dam Engineering and Safety
- Fluid Dynamics Simulations and Interactions
- Seismic Imaging and Inversion Techniques
- Ocean Waves and Remote Sensing
- Soil erosion and sediment transport
- Hydrological Forecasting Using AI
- Heat and Mass Transfer in Porous Media
- Geotechnical Engineering and Underground Structures
- Groundwater and Isotope Geochemistry
- Flood Risk Assessment and Management
- Fluid Dynamics and Vibration Analysis
- Urban Stormwater Management Solutions
- Seismic Waves and Analysis
- Hydraulic flow and structures
- Lattice Boltzmann Simulation Studies
- Methane Hydrates and Related Phenomena
- Computational Fluid Dynamics and Aerodynamics
- Wave and Wind Energy Systems
- Meteorological Phenomena and Simulations
National Chung Hsing University
2016-2025
National Taiwan University of Science and Technology
2021-2024
University of Washington
2007
National Taiwan University
1999-2005
National Taipei University
2005
American Society of Civil Engineers
2000
ABSTRACT This study introduces a reliable analytical solution to the two‐dimensional linearised Boussinesq equation, applicable groundwater flow in an anisotropic rectangular aquifer over impervious stratum. Validation is performed using numerical based on finite difference method for nonlinear equation. Additionally, proposed model or semi‐infinite domains effectively estimates level changes due diffuse recharge, with converging simulation results as domain size increases. By incorporating...
A forecasting model is developed using a hybrid approach of artificial neural network (ANN) and multiple regression analysis (MRA) to predict the total typhoon rainfall groundwater-level change in Zhuoshui River basin. We used information from raingauge stations eastern Taiwan open source data build ANN for groundwater level during event; then we revised predictive values MRA. As result, average accuracy improved up 80% when MRA was applied, even where insufficient were available training....
Sloping unconfined aquifers are commonly seen and well investigated in the literature. In this study, we propose a generalized integral transformation method to solve linearized Boussinesq equation that governs groundwater level sloping aquifer with an impermeable bottom. The responses of under temporally uniform recharge or nonuniform events discussed. After comparing numerical solution nonlinear equation, proposed appears better than previous study. Besides, found solutions reached...
The groundwater level in an unconfined aquifer near a river is strongly affected by rainfall and level. linearized Boussinesq equation has been used numerous studies to analytically investigate the changes A perturbation method was determine non-linear term of equation. generalized integral transform technique (GITT) subsequently obtain semi-analytical solution. We compared this solution with analytical numerical investigated influence each parameter that affects number convergent terms...
This study examines low Reynolds number flow over vegetated sloping ground. Instead of using the traditional empirical formula related to resistance or frictional roughness, a new approach is presented by considering inside vegetation layer as porous media governed Biot’s poroelastic theory well soil layer. There discrepancy in velocity distributions vegetative mantle area and bare area, respectively. Due change density, effects porosity blockage on surface water are discussed.
SUMMARY This work investigates the profiles of surface water flow over a pervious pavement, for example, highway, during uniform rainfall. The such as porous asphalt or open‐graded friction course, is regarded medium, and inside layer media flow. At first, velocity distributions are solved based on simplified Navier–Stokes equations Biot's theory poroelasticity permeable layer, respectively. Then, can be found via continuity equation. Because closed form depth cannot obtained, numerical...
<abstract> <p>In nature, aquifers are usually composed of distinct kinds media, i.e., heterogeneous domains rather than homogeneous domains. Groundwater level and flow changes in such more complicated those domains; thus, building a mathematical model for addressing groundwater is the present research goal. In conventional on similar topics, many one-dimensional (1D) analytical models have been presented, but it challenging to simulate real-world scenarios. This study develops...
Chang, C.-H.; Wang, K.-H., and Hsieh, P.-C., 2017. Fully nonlinear model for simulating solitary waves propagating through a partially immersed rectangular structure.In this study, two-dimensional fully wave is developed to simulate the surface of structure. The analysis includes transient characteristics evolving waveforms throughout process wave-structure interaction. potential-flow–based finite difference generalized by solving transformed equations in grids according vertically...
The objective of this study was to develop a complete analytical solution determining the effect any varying rainfall recharge rates on groundwater flow in an unconfined sloping aquifer. domain aquifer assumed be semi-infinite with impervious bottom base, and initial water level parallel mild slope. In past, similar problems have been discussed mostly by considering uniform or temporally rate, but current explored variation under spatially distributed rates. presented verified comparing its...
Groundwater level in coastal aquifers is usually affected by tidal waves and rainfall recharge. Therefore, the objective of this study to present a mathematical model account for effects recharge simultaneously. The based on Dupuit–Forchheimer assumptions separated into component component. A new more general analytical solution acquired generalized integral transform technique. beach slope, inclination an impermeable base aquifer, any randomly distributed are taken model. finding that...
Substantial energy losses occur when water flows over vegetated ground. Vegetation enhances surface resistance and decreases flow velocity, which results in loss. Since the ground is considered to be permeable, both subsurface are simultaneously resolved. The objectives of this study analyze dynamic effects including distributions shear stress, by an analytical approach for better understanding physical mechanism. An inflection point velocity distribution found as that conventional research...
Abstract According to Chen et al. ( Journal of Engineering Mechanics , ASCE 1997; 123 (10):1041–1049.) a boundary layer exists within the porous bed and near homogeneous‐water/porous‐bed interface when oscillatory water waves propagate over soft poroelastic bed. This makes evaluation second kind longitudinal wave inside very inaccurate. In this study, correction approach for is applied value problem linear propagating After analyses length scale order magnitude physical variables are done,...
A direct analytical approach is proposed to study the turbulent surface water flow on a slope. Both unplanted ground and grassed are investigated by dividing field into two layers—homogenous layer/vegetation layer permeable soil layer, respectively. The vegetation layers regarded as porous media, Biot’s poroelastic theory applied. effect of velocity also analyzed. As Reynolds stresses become larger, strength increases, distributions more uniform. average compared with that calculated...
SUMMARY A new approach is proposed to analyze the surface flow and subsurface passing over a pervious ground under uniform rainfall excess. The field divided into two regions that are called water layer soil . To figure out hydraulic behavior of overland on an inclined plane event, simplified Navier–Stokes equations employed for flow, inside porous media which governed by Biot's (1956, 1962) theory poroelasticity. velocity distribution nonzero at surface. relation between depth slope length...
Water storage inside hillslopes is a crucial issue of environment and water resources. This study separately built numerical model an analytical employing hillslope-storage equation to simulate the in sloping aquifer response recharge. The variable width hillslope was hypothetically represented by exponential function categorize into three types: uniform, convergent, divergent. An integral transform technique introduced derive solution whereas finite difference method employed for modelling....
Abstract This work reinvestigates the flow field of a uniform past porous spherical shell based on Song and Huang's (2000) theory laminar poroelastic media with proper boundary conditions. The analytical solution this study not only indicates viscous effects inside shell, but it also preserves continuities tangential velocity shear stress at interfaces. result reveals that as porosity approaches unity, is entirely comprised incident stream; zero, well‐known Stokes' sphere low Reynolds number...
A vertical porous wave maker sitting in an infinitely long channel of constant depth is studied. The performs horizontal oscillatory motion. simplified analytical approach for thin and boundary integral method valid a porous‐wave any thickness are presented this study. fundamental assumption that the velocity profiles identical throughout maker. validity porous‐wave‐maker verified by numerical solution method. However, also shows very different results between thick makers. effect inertial...
In this study, the authors describe hydraulic mechanism of a 2D water flow down slope. The surface flowed in Layer 1, whereas subsurface was 2. 2 is regarded as an isotropic porous medium such that velocity on ground nonzero. Navier-Stokes equation and laminar model based Biot’s poroelastic theory were applied to motion Layers 1 2, respectively. Additionally, formulated problem by considering vertical momentum equation. With hypothetical type appropriate boundary conditions, derived some...
The problem of the dynamic interaction water waves, current, and a hard poroelastic bed is dealt with in this study. Finite-depth homogeneous harmonic linear waves passing over semi-infinite investigated. In order to reveal importance viscous effect for different forms, viscosity considered herein. boundary layer correction approach, governing equations material are decoupled without losing physical generality. contribution pressure shear bed, which valuable indication mechanism ripple...