Shirin C C Saverimuttu

ORCID: 0000-0003-1191-2681
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Biomedical Text Mining and Ontologies
  • Bioinformatics and Genomic Networks
  • Alzheimer's disease research and treatments
  • Genomics and Phylogenetic Studies
  • Genetic Associations and Epidemiology
  • Cardiovascular Function and Risk Factors
  • Genetic and phenotypic traits in livestock
  • Research Data Management Practices
  • Computational Drug Discovery Methods
  • Peroxisome Proliferator-Activated Receptors
  • Neuroinflammation and Neurodegeneration Mechanisms
  • Race, Genetics, and Society
  • Pulmonary Hypertension Research and Treatments
  • Scientific Computing and Data Management

University College London
2020-2025

European Bioinformatics Institute
2021-2024

SIB Swiss Institute of Bioinformatics
2023

Stanford University
2023

Phoenix Bioinformatics
2023

University at Buffalo, State University of New York
2023

University of Southern California
2023

University of Padua
2023

Seth Carbon Eric Douglass Benjamin M. Good Deepak Unni Nomi L. Harris and 95 more Chris Mungall Siddartha Basu Rex L. Chisholm Robert J. Dodson Eric C Hartline Petra Fey Paul D. Thomas Laurent‐Philippe Albou Dustin Ebert Michael J Kesling Huaiyu Mi Anushya Muruganujan Xiaosong Huang Tremayne Mushayahama Sandra LaBonte Deborah A. Siegele Giulia Antonazzo Helen Attrill Nicholas H. Brown Phani Garapati Steven J Marygold Vítor Trovisco Gil dos Santos Kathleen Falls Christopher J. Tabone Pinglei Zhou Joshua L. Goodman Victor Strelets Jim Thurmond Penelope Garmiri Rizwan Ishtiaq M. Rodríguez-López Márcio Luís Acencio Martin Kuiper Astrid Lægreid Colin Logie Ruth C. Lovering Barbara Kramarz Shirin C C Saverimuttu Sandra De Miranda Pinheiro Heather Gunn Renzhi Su Kate E. Thurlow Marcus C. Chibucos Michelle Giglio Suvarna Nadendla James B. Munro Rebecca Jackson Margaret Duesbury Noemí del‐Toro Birgit H M Meldal Kalpana Paneerselvam Livia Perfetto Pablo Porras Sandra Orchard Anjali Shrivastava Hsin-Yu Chang ROBERT FINN Alex Mitchell Neil D. Rawlings Lorna Richardson Amaia Sangrador‐Vegas Judith A. Blake Karen Christie M. Eileen Dolan Harold Drabkin David P. Hill Li Ni Dmitry Sitnikov Midori A. Harris Stephen G. Oliver Kim Rutherford Valerie Wood Jaqueline Hayles Jürg Bähler Elizabeth R. Bolton Jeffery L De Pons Melinda R. Dwinell G. Thomas Hayman Mary L. Kaldunski Anne E. Kwitek Stanley J. F. Laulederkind Cody Plasterer Marek Tutaj Mahima Vedi Shur‐Jen Wang Peter D’Eustachio Lisa Matthews James P. Balhoff Suzi Aleksander Michael J. Alexander J. Michael Cherry Stacia R. Engel Felix Gondwe Kalpana Karra

Abstract The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding functions of genes and gene products. Here, we report advances consortium over past two years. new GO-CAM annotation framework was notably improved, formalized model with a computational schema to check validate rapidly increasing repository 2838 GO-CAMs. In addition, describe impacts several collaborations refine GO 10% increase in number annotations,...

10.1093/nar/gkaa1113 article EN cc-by Nucleic Acids Research 2020-12-03

Abstract Polygenic scores (PGS) have transformed human genetic research and multiple potential clinical applications, including risk stratification for disease prevention prediction of treatment response. Here, we present a series recent enhancements to the PGS Catalog ( www.PGSCatalog.org ), largest findable, accessible, interoperable, reusable (FAIR) repository PGS. These include expansions in data content ancestral diversity as well addition new features. We further Calculator pgsc_calc ,...

10.1101/2024.05.29.24307783 preprint EN cc-by medRxiv (Cold Spring Harbor Laboratory) 2024-05-31
Marc Feuermann Huaiyu Mi Pascale Gaudet Anushya Muruganujan Suzanna Lewis and 95 more Dustin Ebert Tremayne Mushayahama Suzi Aleksander James P. Balhoff Seth Carbon J. Michael Cherry Harold Drabkin Nomi L. Harris David P. Hill Raymond Lee Colin Logie Sierra Moxon Chris Mungall Paul W. Sternberg Kimberly Van Auken Jolene Ramsey Deborah A. Siegele Rex L. Chisholm Petra Fey Michelle Giglio Suvarna Nadendla Giulia Antonazzo Helen Attrill Nicholas H. Brown Phani Garapati Steven J Marygold Saadullah H. Ahmed Praoparn Asanitthong Diana Luna Buitrago Meltem N Erdol Matthew Gage SI-YAO HUANG Mohamed Ali Kadhum Kan Yan Chloe Li Miao Long Aleksandra Michalak Angeline Pesala Armalya Pritazahra Shirin C C Saverimuttu Renzhi Su Qiang Xu Ruth C. Lovering Judith A. Blake Karen Christie Lori E Corbani M. Eileen Dolan Li Ni Dmitry Sitnikov Cynthia L. Smith Manuel Lera-Ramírez Kim Rutherford Valerie Wood Peter D’Eustachio Wendy Demos Jeffrey L De Pons Melinda R. Dwinell G. Thomas Hayman Mary L. Kaldunski Anne E. Kwitek Stanley J. F. Laulederkind Jennifer R. Smith Marek Tutaj Mahima Vedi Shur‐Jen Wang Stacia R. Engel Kalpana Karra Stuart R. Miyasato Robert S Nash Marek S. Skrzypek Shuai Weng Edith D. Wong Tilmann Achsel Maria Andres‐Alonso Claudia Bagni Àlex Bayés Thomas Biederer Nils Brose John Jia En Chua Marcelo P. Coba L. Niels Cornelisse Jaime de Juan‐Sanz Hana L. Goldschmidt Eckart D. Gundelfinger Richard L. Huganir Cordelia Imig Reinhard Jahn Hwajin Jung Pascal S. Kaeser Eunjoon Kim Frank Koopmans Michael R. Kreutz Noa Lipstein Harold D. MacGillavry Peter S. McPherson Vincent O’Connor

Abstract A comprehensive, computable representation of the functional repertoire all macromolecules encoded within human genome is a foundational resource for biology and biomedical research. The Gene Ontology Consortium has been working towards this goal by generating structured body information about gene functions, which now includes experimental findings reported in more than 175,000 publications genes experimentally tractable model organisms 1,2 . Here, we describe results large,...

10.1038/s41586-025-08592-0 article EN cc-by Nature 2025-02-26

Gene Ontology (GO) is a major bioinformatic resource used for analysis of large biomedical datasets, example from genome-wide association studies, applied universally across biological fields, including Alzheimer's disease (AD) research.We aim to demonstrate the applicability GO interpretation AD datasets improve understanding underlying molecular mechanisms, involvement inflammatory pathways and dysregulated microRNAs (miRs).We have undertaken systematic full article annotation approach...

10.3233/jad-200207 article EN Journal of Alzheimer s Disease 2020-05-15

Abstract The role of the blood–brain barrier (BBB) in Alzheimer’s and other neurodegenerative diseases is still subject many studies. However, those studies using high-throughput methods have been compromised by lack Gene Ontology (GO) annotations describing proteins normal function BBB. GO Consortium provides a gold-standard bioinformatics resource used for analysis interpretation large biomedical data sets. also research communities and, therefore, must meet variety demands on breadth...

10.1093/database/baab067 article EN cc-by Database 2021-10-01

Abstract Gene Ontology (GO) is a tool which provides gene functional annotations, an essential resource for knowledge discovery and the analysis of biological datasets. Although considerable research has quantified similarity between products physiological processes, there need to identify these may contribute pathophysiological states in humans. Previous studies have identified role PPARG multiple signalling pathways, particularly those TGFB1 BMP2, pulmonary artery smooth muscle cells their...

10.1101/2024.12.03.626672 preprint EN bioRxiv (Cold Spring Harbor Laboratory) 2024-12-07
Coming Soon ...