Szilárd Gy. Révész

ORCID: 0000-0003-1504-8798
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Analytic and geometric function theory
  • Mathematical functions and polynomials
  • Analytic Number Theory Research
  • Mathematical Approximation and Integration
  • Advanced Harmonic Analysis Research
  • Advanced Mathematical Modeling in Engineering
  • Holomorphic and Operator Theory
  • Mathematical Analysis and Transform Methods
  • Spectral Theory in Mathematical Physics
  • Mathematical Dynamics and Fractals
  • Point processes and geometric inequalities
  • Advanced Banach Space Theory
  • Differential Equations and Boundary Problems
  • Nonlinear Differential Equations Analysis
  • advanced mathematical theories
  • Functional Equations Stability Results
  • Meromorphic and Entire Functions
  • Advanced Topology and Set Theory
  • Approximation Theory and Sequence Spaces
  • Algebraic and Geometric Analysis
  • Mathematics and Applications
  • Advanced Mathematical Identities
  • Mathematical Inequalities and Applications
  • Nonlinear Partial Differential Equations
  • Numerical methods in inverse problems

Alfréd Rényi Institute of Mathematics
2010-2025

University of Pecs
2017-2018

Hungarian Academy of Sciences
2006-2018

Budapest University of Technology and Economics
2016

Kuwait University
2013-2014

Institut Henri Poincaré
2006

Sorbonne Université
2006

Eötvös Loránd University
1990

Abstract In a previous paper, we proved Carlson‐type density theorem for zeroes in the critical strip Beurling zeta functions satisfying Axiom A of Knopfmacher. There needed to invoke two additional conditions: integrality norm (Condition B) and an “average Ramanujan condition” arithmetical function counting number different integers same G). Here, implement new approach Pintz using classic zero‐detecting sums coupled with Halász' method, but otherwise arguing elementary way avoiding,...

10.1112/jlms.70110 article EN cc-by Journal of the London Mathematical Society 2025-03-01

If $\Delta$ stands for the region enclosed by triangle in ${\mathsf R}^2$ of vertices $(0,0)$, $(0,1)$ and $(1,0)$ (or simplex short), we consider space ${\mathcal P}(^2\Delta)$ 2-homogeneous polynomials on endowed with norm given $\|ax^2+bxy+cy^2\|_\Delta:=\sup\{|ax^2+bxy+cy^2|:(x,y)\in\Delta\}$ every $a,b,c\in{\mathsf R}$. We investigate some geometrical properties this norm. provide an explicit formula $\|\cdot\|_\Delta$, a full description extreme points corresponding unit ball...

10.7146/math.scand.a-15111 article EN MATHEMATICA SCANDINAVICA 2009-09-01

10.1006/jath.1998.3314 article EN publisher-specific-oa Journal of Approximation Theory 1999-07-01

10.1016/j.jmaa.2024.128931 article EN cc-by-nc-nd Journal of Mathematical Analysis and Applications 2024-10-09

10.1007/s00605-006-0397-5 article EN Monatshefte für Mathematik 2006-05-17

Abstract For a fixed positive integer n consider continuous functions $$K_1,\dots $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> </mml:mrow> </mml:math> , K_n:[-1,1]\rightarrow {{\mathbb {R}}}\cup \{-\infty \}$$ <mml:mi>n</mml:mi> <mml:mo>:</mml:mo> <mml:mo>[</mml:mo> <mml:mo>-</mml:mo> <mml:mo>]</mml:mo> <mml:mo>→</mml:mo> <mml:mi>R</mml:mi> <mml:mo>∪</mml:mo>...

10.1007/s13163-023-00461-6 article EN cc-by Revista Matemática Complutense 2023-03-04

10.1016/j.jmaa.2004.06.031 article EN publisher-specific-oa Journal of Mathematical Analysis and Applications 2004-09-18

We study the following question posed by Turán. Suppose <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega"> <mml:semantics> <mml:mi mathvariant="normal">Ω</mml:mi> <mml:annotation encoding="application/x-tex">\Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a convex body in Euclidean space alttext="double-struck R Superscript d"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD">...

10.1090/s0002-9939-03-07023-0 article EN publisher-specific-oa Proceedings of the American Mathematical Society 2003-03-25

We study the following question: given an open set Ω, symmetric about 0, and a continuous, integrable, positive definite function f, supported in Ω with f(0) = 1, how large can ∫ f be? This problem has been studied so far mostly for convex domains Euclidean space. In this paper we question arbitrary locally compact abelian groups more general domains. Our emphasis is on finite as well spaces ℤd. exhibit upper bounds assuming geometric properties of two types: (a) packing (b) spectral Ω....

10.1112/s0024610706023234 article EN Journal of the London Mathematical Society 2006-10-01

We prove three results on the density resp. local and clustering of zeros Beurling zeta function $\zeta(s)$ close to one-line $\sigma:=\Re s=1$. The analysis here brings about some news, sometimes even for classical case Riemann function. Theorem 4 provides a zero estimate, which is complement known Selberg class. Note that class rely use functional equation $\zeta$, we do not assume in context. In 5 deduce variant well-known theorem Tur\'an, extending its range validity rectangles height...

10.1112/mtk.12156 article EN Mathematika 2022-08-05

We prove two results, generalizing long existing knowledge regarding the classical case of Riemann zeta function and some its generalizations. These are concerned with question Ingham, who asked for optimal explicit order estimates error term Δ(x):=ψ(x)−x, given any zero-free region D(η):={s=σ+it∈C:σ:=ℜs≥1−η(t)}. In essentially sharp results due to 40 years old work Pintz. Here we consider a system Beurling primes P, generated arithmetical semigroup G, corresponding integer counting N(x),...

10.1307/mmj/20226271 article EN The Michigan Mathematical Journal 2024-01-01

We investigate the existence of well-behaved Beurling number systems, which are systems generalized primes and integers admit a power saving in error term both their prime integer-counting function. Concretely, we search for so-called <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket alpha comma beta right-bracket"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo>...

10.1090/tran/9274 article EN Transactions of the American Mathematical Society 2024-07-19

The classical Bernstein pointwise estimate of the (first) derivative a univariate algebraic polynomial on an interval has natural extensions to multivariate setting. However, in several variables domain boundedness, even if convex, considerable geometric variety. In 1990, Y. Sarantopoulos satisfactorily settled case centrally symmetric convex body by method we may call "the inscribed ellipses." On other hand, for general nonsymmetric bodies are only within constant factor exact inequality....

10.1155/jia.2005.145 article EN cc-by Journal of Inequalities and Applications 2005-01-01

10.1016/j.jat.2006.03.002 article EN Journal of Approximation Theory 2006-05-16

We extend some equilibrium-type results first conjectured by Ambrus, Ball and Erdélyi, then proved recenly Hardin, Kendall Saff. work on the torus T ≃ [ 0 , 2 π ) but motivation comes from an analogous setup unit interval, investigated earlier Fenton. The problem is to minimize — with respect arbitrary translates y = j ∈ 1 ⋯ n maximum of sum function F : K + ∑ ( · − where functions are certain fixed 'kernel functions'. In our setting, has singularities at while in between these nodes it...

10.1112/tlm3.12010 article EN cc-by Transactions of the London Mathematical Society 2018-01-04

We consider the classical Wiener–Ikehara Tauberian theorem, with a generalized condition of slow decrease and some additional poles on boundary convergence Laplace transform. In this generality, we prove otherwise known asymptotic evaluation transformed function, when usual conditions theorem hold. However, our version also provides an effective error term, not thus far in generality. The crux proof is proper, variation lemmas Ganelius Tenenbaum, constructed for sake theorem.

10.1142/s1793042113500760 article EN International Journal of Number Theory 2013-06-24

We say that Wiener's property holds for the exponent p>0 whenever a positive definite function f, which belongs to Lp(−ε,ε) some ε>0, necessarily Lp(T), too. This true p∈2N by classical result of Wiener. Recently various concentration results were proved idempotents and functions on measurable sets torus. They enable us prove sharp version failure p∉2N, strengthening Wainger Shapiro. To cite this article: A. Bonami, S.Gy. Révész, C. R. Acad. Sci. Paris, Ser. I 346 (2008). On dit que...

10.1016/j.crma.2007.11.013 article FR other-oa Comptes Rendus Mathématique 2008-01-01

We prove that for all p&gt;1/2 there exists a constant $γ_p&gt;0$ such that, any symmetric measurable set of positive measure $E\subset \TT$ and $γ γ\int_{\TT} |f|^p$. This disproves conjecture Anderson, Ash, Jones, Rider Saffari, who proved the existence p&gt;1 conjectured it does not p=1. Furthermore, we one can take $γ_p=1$ when is an even integer, polynomials f be chosen with arbitrarily large gaps $p\neq 2$. shows striking differences case p=2, which best strictly smaller than 1/2, as...

10.1353/ajm.0.0065 article EN American Journal of Mathematics 2009-07-26
Coming Soon ...