About
Contact & Profiles
Research Areas
- Phase Change Materials Research
- Adsorption and Cooling Systems
- Solar Thermal and Photovoltaic Systems
- Thermal Expansion and Ionic Conductivity
- Carbon Dioxide Capture Technologies
- Molten salt chemistry and electrochemical processes
- Material Dynamics and Properties
- Membrane Separation and Gas Transport
- Solar-Powered Water Purification Methods
- Thermal properties of materials
- Nanofluid Flow and Heat Transfer
- Metallurgical Processes and Thermodynamics
- Electrocatalysts for Energy Conversion
- Chemical Looping and Thermochemical Processes
- Building Energy and Comfort Optimization
- Phase Equilibria and Thermodynamics
- Advanced battery technologies research
- Catalytic Processes in Materials Science
- Solidification and crystal growth phenomena
- Aerogels and thermal insulation
- Magnesium Oxide Properties and Applications
- Advanced Battery Materials and Technologies
- Radiative Heat Transfer Studies
- Metalloenzymes and iron-sulfur proteins
- Metal-Organic Frameworks: Synthesis and Applications
South China University of Technology
2015-2024
Sichuan Animal Science Academy
2024
10.1016/j.apenergy.2009.06.022
article
EN
Applied Energy
2009-07-15
10.1016/j.solmat.2017.05.050
article
EN
Solar Energy Materials and Solar Cells
2017-06-02
10.1016/j.apenergy.2013.03.090
article
EN
Applied Energy
2013-08-15
10.1016/j.apenergy.2017.07.027
article
EN
Applied Energy
2017-07-25
10.1016/j.apenergy.2015.03.020
article
EN
Applied Energy
2015-03-27
10.1016/j.solmat.2020.110813
article
EN
Solar Energy Materials and Solar Cells
2020-10-03
10.1016/j.solmat.2015.12.038
article
EN
Solar Energy Materials and Solar Cells
2016-02-04
10.1016/j.apenergy.2012.10.048
article
EN
Applied Energy
2012-11-17
10.1016/j.memsci.2010.02.028
article
EN
Journal of Membrane Science
2010-02-15
In this work, an inexpensive and commercially available bentonite was modified by sulfuric acid explored as the new type of support to immobilize tetraethylenepentamine (TEPA) for CO2 capture from flue gas. By applying treatment, textural properties, in particular, pore volume surface area bentonite, were significantly improved. Bentonite treated with 6 M (Ben_H2SO4_6M) can reach a 0.77 cc/g that parent 0.15 cc/g. With maximum TEPA loading 50 wt % onto Ben_H2SO4_6M sorbent, breakthrough...
10.1021/ef3021816
article
EN
Energy & Fuels
2013-03-12
10.1016/j.apsusc.2016.02.154
article
EN
Applied Surface Science
2016-02-27
10.1016/j.ijheatmasstransfer.2016.07.042
article
EN
International Journal of Heat and Mass Transfer
2016-08-04
10.1016/j.cej.2013.05.062
article
EN
Chemical Engineering Journal
2013-06-04
10.1016/j.renene.2019.04.153
article
EN
Renewable Energy
2019-05-29
10.1016/j.apenergy.2020.114681
article
EN
Applied Energy
2020-02-19
10.1016/j.nanoen.2017.07.020
article
EN
Nano Energy
2017-07-11
10.1016/j.apenergy.2017.07.019
article
EN
Applied Energy
2017-07-26
10.1016/j.apenergy.2017.03.096
article
EN
Applied Energy
2017-04-05
10.1016/j.energy.2021.120412
article
EN
Energy
2021-03-29
10.1016/j.apenergy.2015.07.022
article
EN
Applied Energy
2015-07-24
10.1016/j.apenergy.2018.03.116
article
EN
Applied Energy
2018-03-30
10.1016/j.apenergy.2019.114418
article
EN
Applied Energy
2020-02-10
10.1016/j.solmat.2020.110415
article
EN
Solar Energy Materials and Solar Cells
2020-02-12
10.1016/j.solmat.2021.111130
article
EN
Solar Energy Materials and Solar Cells
2021-04-28
10.1016/j.ijheatmasstransfer.2022.123305
article
EN
International Journal of Heat and Mass Transfer
2022-08-02
Coming Soon ...