Ingrid Maria Denóbile Torres

ORCID: 0000-0003-4336-0682
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Animal Vocal Communication and Behavior
  • Marine animal studies overview
  • Animal Behavior and Reproduction
  • Avian ecology and behavior
  • Species Distribution and Climate Change
  • Diverse Musicological Studies
  • Ecology and Vegetation Dynamics Studies
  • Plant and animal studies
  • Noise Effects and Management

Universidade Federal da Paraíba
2017-2024

Abstract Passive acoustic monitoring (PAM) is increasingly popular in ecological research, but recording and analyzing large amounts of data still a critical bottleneck for the long‐term multiple species. We evaluated how temporal spatial sampling effort affects species diversity estimates using set 14,045 1‐min recordings from various neotropical birds anuran communities. Our goals were to evaluate (i) daily vocal activity cycle anurans, (ii) effect structure (e.g., number minutes listened...

10.1111/btp.13307 article EN Biotropica 2024-04-05
Cristian Pérez‐Granados Jon Morant Etxebarría Kevin Félix Arno Darras Oscar Humberto Marín Gómez Ivanova Claribel Orejuela Mendoza and 88 more Miguel Ángel Mohedano-Muñoz Erika Santamaría Giulia Bastianelli Alba Márquez-Rodríguez Michał Budka Gérard Bota Judit Rubio Eladio L. García de la Morena Manu Santa-Cruz Porfirio Nava Mario Fernández‐Tizón Hugo Sánchez-Mateos Adrián Barrero Juan Traba Tomasz S. Osiejuk Patrick J. Hart A Navine Alejandro González-Muñoz Carlos Barros de Araújo Gabriel Lima Medina Rosa Ingrid Maria Denóbile Torres Ana Luiza Camargo Catalano Cássio Rachid Meireles de Almeida Simões Diego Llusia Morales Manuel M.B Pablo Acebes José M. Medina N.M.D. Brown Christos Astaras Ilias Karmiris Estanislao Aguayo Navarrete Maxime Cauchoix Luc Barbaro David Funosas Dominik Arend Sandra Müller Fernando González-García Alberto González-Romero Christos Mammides Michaelangelo Pontikis Giordano Jacuzzi Julian D. Olden Sara Bombaci Gabriel Marcacci Alain Jacot Juan Pablo Zurano Elena Gangenova Diego� Varela Facundo G. Di Sallo Gustavo A. Zurita Andrey Atemasov Junior A. Tremblay Vincent Lamarre Anja Hutschenreiter Alan Monroy-Ojeda Mauricio Díaz-Vallejo Sergio Chaparro‐Herrera Robert A. Briers Renata S. Sousa‐Lima Thiago Pinheiro Walmir da Silva Alice Calvente Anamaria Dal Molin Alexandre Antonelli Svetlana S. Gogoleva Igor V. Palko Hiếu Vũ Trọng Marina H. L. Duarte Natália dos Santos Falcão Saturnino Stephanie Ribeiro Silva Ana Rainho Paula C. Lopes Karl‐Ludwig Schuchmann M Marques Ana Oliveira Nick A Littlewood Mao‐Ning Tuanmu Yi-Ru Cheng How‐Ran Chao Sebastian Kepfer‐Rojas Alfredo Aguilera Bazán Lluís Brotóns Mariano J. Feldman Louis Imbeau Pooja Panwar Aaron S. Weed Anant Dehwal Esther Sebastián‐González

<title>Abstract</title> Under the current global biodiversity crisis, there is a need for automated and non-invasive monitoring techniques that are able to gather large amounts of information cost-effectively at scales. One such technique passive acoustic monitoring, which commonly coupled with automatic identification animal species based on their sound. Automated sound analyses usually require training detection algorithms. These algorithms annotated datasets mark occurrence sounds...

10.21203/rs.3.rs-5729784/v1 preprint EN cc-by-nc Research Square (Research Square) 2025-01-04
Cristian Pérez‐Granados David Funosas Jon Morant O. Marín Ivanova Claribel Orejuela Mendoza and 93 more Miguel Ángel Mohedano-Muñoz Erika Santamaría Giulia Bastianelli Alba Márquez-Rodríguez Michał Budka Gérard Bota José M. De la Peña-Rubio Eladio L. García de la Morena Manuel Snata-Cruz Porfirio Nava Mario Fernández‐Tizón Hugo Sánchez.Mateos Adrián Barrero Juan Traba Tomasz S. Osiejuk Patrick J. Hart Amanda K. Navine Alejandro González-Muñoz Cid B. de Araújo Gabriel Lima Medina Rosa Ingrid Maria Denóbile Torres Ana Luiza Camargo Catalano Cláudia Simões Diego Llusia Manuel B. Morales Pablo Acebes Juan A. Medina Méndez N.M.D. Brown Christos Astaras Ilias Kamiris Estanislao de Simón Navarrete Maxime Cauchoix Luc Barbaro Dominik Arend Sandra Müeller Fernando González-García Alberto González-Romero Christos Mammides Michaelangelo Pontikis Giordano Jacuzzi Julian D. Olden Sara Bombaci Gabriel Marcacci Alain Jacot Juan Pablo Zurano Elena Gangenova Diego� Varela Facundo G. Di Sallo Gustavo A. Zurita Andrey Atemasov Junior A. Tremblay Anja Jutschrenteiter Alan Monroy-Ojeda Mauricio Díaz-Vallejo Sergio Chaparro‐Herrera Robert A. Briers Renata S. Sousa‐Lima Thiago Pinheiro Walmir da Silva Alice Calvente Anders Molin Alexandre Antonelli Svetlana S. Gogoleva Igor V. Palko Hiếu Vũ Trọng Marina H. L. Duarte Natália dos Santos Falcão Saturnino Stephanie Ribeiro Silva Ana Rainho Karl‐Ludwig Schuchmann Marinêz Isaac Marques Ana Silvia de Oliveira Tissiani Nick A. Littlewood Mao‐Ning Tuanmu Yi-Ru Cheng How‐Ran Chao Sebastian Kepfer‐Rojas Alfredo Aguilera Bazán Lluís Brotóns Mariano L. Feldman Louis Imbeau Pooja Panwar Aaron S. Weed Anant Dehwal Alfredo Attisano Jörn Theuerkauf Dorgival Diógenes Oliveira‐Júnior Cicero Simão Lima‐Santos Carlos Salustio‐Gomes Rodrigo Paz Mauro Pichorim Eben Goodale Esther Sebastián‐González

<title>Abstract</title> BirdNET is a popular machine learning tool for automated recognition of bird sounds. Here we evaluate how settings affect the model performance both at vocalization and species levels, using 4,225 one-minute recordings from 67 recording locations worldwide. Giving equal importance to recall precision, low confidence score threshold (0.1-0.3) appears optimal detecting vocalisations, whereas higher thresholds (around 0.5) are more suitable characterising communities....

10.21203/rs.3.rs-6633549/v1 preprint EN 2025-05-15

Passive acoustic monitoring (PAM) has become increasingly popular in biodiversity. It produces large amounts of data and can provide a foundation for understanding the long-term consequences environmental degradation. However, extracting biological information from such extensive datasets be challenging requires advanced computational skills. Herein, we introduce streamlined workflow detecting signals three critically endangered birds: Cherry-throated Tanager (Nemosia rourei), Alagoas...

10.1080/09524622.2023.2268579 article EN Bioacoustics 2023-10-23

Acoustic signal production is affected by allometric relationships, which the larger animal, lower its call frequency. In this paper, three evolutionary acoustic hypotheses were tested: Signal-to-Noise Ratio Hypothesis (SNRH), in evolution maximizes ranges increasing signal-to-noise ratio; Stimulus Threshold (STH), range of a specific threshold; and Body Size (BSH), emission long wavelengths enabled body size. Three spectral metrics measured, Dominant Frequency (FDOM), Minimum Fundamental...

10.1121/1.5005495 article EN The Journal of the Acoustical Society of America 2017-10-01

Communication among birds constitutes the foundation of social interactions, and acoustic signals should evolve based on their efficiency to convey information. We examined an Amazonian bird assemblage by testing whether vocal allometry was main driver in song evolution. expected parameters songs follow general allometric rules, as size apparatus limits vibration capacity syrinx. tested smaller species use lower than frequencies due environmental filtering examining deviations from...

10.1111/ibi.12720 article EN Ibis 2019-02-16
Coming Soon ...