Kazuhiro Ishige

ORCID: 0000-0003-4799-7592
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Advanced Mathematical Modeling in Engineering
  • Nonlinear Partial Differential Equations
  • Stability and Controllability of Differential Equations
  • Advanced Mathematical Physics Problems
  • Numerical methods in inverse problems
  • Geometric Analysis and Curvature Flows
  • advanced mathematical theories
  • Differential Equations and Boundary Problems
  • Nonlinear Differential Equations Analysis
  • Spectral Theory in Mathematical Physics
  • Fractional Differential Equations Solutions
  • Differential Equations and Numerical Methods
  • Analytic and geometric function theory
  • Point processes and geometric inequalities
  • Advanced Harmonic Analysis Research
  • Advanced Differential Geometry Research
  • Functional Equations Stability Results
  • Solidification and crystal growth phenomena
  • Mathematical Biology Tumor Growth
  • Mathematical Analysis and Transform Methods
  • Advanced Topology and Set Theory
  • Meromorphic and Entire Functions
  • Environmental Monitoring and Data Management
  • Electronic and Structural Properties of Oxides
  • Contact Mechanics and Variational Inequalities

The University of Tokyo
2016-2024

Tokyo Metropolitan University
2021

Tohoku University
2008-2018

University of Florence
2018

Fukushima University
2018

Liceo scientifico statale Ulisse Dini
2018

Osaka Prefecture University
2017

Nagoya University
1996-2003

Tokyo Gakugei University
2003

National Institute for Materials Science
2002

For the existence of weak solutions \[ \frac{\partial } {{\partial t}}\left( {|u|^{\beta - 1} u} \right) = {\operatorname{div}}\left( {|\nabla u|^{p 2} \nabla \right)\quad {\text{with}}\,|u|^{\beta u( \cdot ,0) \mu ( ), \] we give a sufficient condition for growth order initial data $\mu (x)$ as $|x| \to \infty $.

10.1137/s0036141094270370 article EN SIAM Journal on Mathematical Analysis 1996-09-01

We studythe existence and the large time behavior of global-in-time solutions a nonlinear integral equation with generalized heat kernel\begin{eqnarray*} & u(x,t)=\int_{{\mathbb R}^N}G(x-y,t)\varphi(y)dy\\ \qquad\quad+\int_0^t\int_{{\mathbb R}^N}G(x-y,t-s)F(y,s,u(y,s),\dots,\nabla^\ell u(y,s))dyds,\end{eqnarray*}where $\varphi\in W^{\ell,\infty}({\mathbb R}^N)$ $\ell\in\{0,1,\dots\}$.The arguments this paper are applicable tothe Cauchy problem for various parabolic equationssuch as...

10.3934/dcdss.2014.7.767 article EN Discrete and Continuous Dynamical Systems - S 2014-01-01

We establish the local existence and uniqueness of solutionsof heat equation with a nonlinear boundary conditionfor initial data in uniformly $L^r$ spaces.Furthermore, we study sharp lower estimates blow-up timeof solutions $\lambda\psi$ as $\lambda\to 0$ or $\lambda\to\infty$and solutions.

10.3934/dcds.2016.36.2627 article EN Discrete and Continuous Dynamical Systems 2015-10-01

10.1016/j.anihpc.2020.04.002 article EN Annales de l Institut Henri Poincaré C Analyse Non Linéaire 2020-04-23

10.1016/j.nonrwa.2025.104368 article EN cc-by Nonlinear Analysis Real World Applications 2025-03-23

10.1007/s00526-025-02977-9 article EN cc-by Calculus of Variations and Partial Differential Equations 2025-03-24

We study the large time behavior of solutions for Cauchy problem, ∂ t u = Δu + a(x, t)u in ℝ N × (0, ∞), (x, 0) Q(x) , where Q ∈ L 1 (ℝ (1+|x| K ) dx) with ≥ 0 and ∥a(t)∥ ∞ O(t -A as → some A > 1. In this paper we classify decay rate give precise estimates on difference between their asymptotic profiles. Furthermore, an application, discuss global semilinear heat equation, λ|u| p-1 u, λ p

10.1512/iumj.2009.58.3771 article EN Indiana University Mathematics Journal 2009-01-01

We study the large time behavior of positive solutions forthe Laplace equation on half-space with a nonlinear dynamical boundary condition.We show convergence to Poisson kernel in suitable sense provided initial dataare sufficiently small.

10.3934/cpaa.2012.11.1285 article EN Communications on Pure &amp Applied Analysis 2012-01-01

10.1007/s00013-008-2437-y article EN Archiv der Mathematik 2008-04-16

Abstract We investigate some geometric properties of level sets the solutions parabolic problems in convex rings. introduce notion quasi‐concavity , which involves time and space jointly is a stronger property than spatial quasi‐concavity, study convexity superlevel (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

10.1002/mana.200910242 article EN Mathematische Nachrichten 2010-09-22

We introduce the notion of $\alpha$-parabolic quasi-concavity for functions space and time, which extends usual parabolic quasi-cocavity introduced in [18]. Then we investigate solutions to problems with vanishing initial datum. The results here obtained are generalizations some

10.3934/dcdss.2011.4.851 article EN Discrete and Continuous Dynamical Systems - S 2010-12-08

Let u be a type I blowing up solution of the Cauchy–Dirichlet problem for semilinear heat equation, \left\{\begin{matrix} \partial _{t}u = \mathrm{\Delta }u + u^{p}, & x \in \Omega ,\:t > 0, \\ u(x,t) u(x,0) \varphi (x), , \end{matrix}\right. where is (possibly unbounded) domain in \mathbf{R}^{N} N \geq 1 and p . We prove that, if L^{\infty }(\Omega ) \cap L^{q}(\Omega some q [1,\infty) then blow-up set bounded. Furthermore, we give sufficient condition solutions not to blow on...

10.1016/j.anihpc.2013.03.001 article EN publisher-specific-oa Annales de l Institut Henri Poincaré C Analyse Non Linéaire 2013-03-14

We consider the Schrödinger operator H = − Δ + V ( | x ) with radial potential which may have singularity at 0 and a quadratic decay infinity. First, we study structure of positive harmonic functions give their precise behavior. Second, under quite general conditions prove an upper bound for correspond heat kernel p , y t type < ⩽ C N / 2 U min { } exp all x, ∈ R > where is function H. Third, if A weight on then lower similar type.

10.1112/plms.12041 article EN publisher-specific-oa Proceedings of the London Mathematical Society 2017-05-08

In this paper we obtain necessary conditions and sufficient for the solvability of problem $({\rm P})\, \{ \partial_t u=\Delta u,\, x\in{\bf R}^N_+,\,t>0; \partial_\nu u=u^p,\, x\in\partial{\bf R}^N_+,\, t>0; u(x,0)=\mu(x)\ge 0,\, x\in D:=\overline{{\bf R}^N_+} \}$, where $N\ge 1$, $p>1$, $\mu$ is a nonnegative measurable function in ${\bf R}^N_+$ or Radon measure R}^N$ with $\mbox{supp}\,\mu\subset D$. Our enable us to identify strongest singularity initial data P})$.

10.1137/17m1131416 article EN SIAM Journal on Mathematical Analysis 2019-01-01

We show the existence and uniqueness of initial traces nonnegative solutions to a semilinear heat equation on half space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript N"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {R}^N</mml:annotation>...

10.1090/tran/8922 article EN publisher-specific-oa Transactions of the American Mathematical Society 2023-02-15

Abstract In this paper we consider degenerate parabolic equations, and obtain an interior a boundary Harnack inequalities for nonnegative solutions to the equations. Furthermore boundedness continuity of solutions.

10.1017/s0027763000006978 article EN Nagoya Mathematical Journal 1999-01-01
Coming Soon ...