Marek Biskup

ORCID: 0000-0001-5560-6518
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Stochastic processes and statistical mechanics
  • Theoretical and Computational Physics
  • Markov Chains and Monte Carlo Methods
  • Advanced Mathematical Modeling in Engineering
  • Advanced Thermodynamics and Statistical Mechanics
  • Random Matrices and Applications
  • Mathematical Dynamics and Fractals
  • Spectral Theory in Mathematical Physics
  • Quantum many-body systems
  • Gamma-ray bursts and supernovae
  • Astronomical Observations and Instrumentation
  • nanoparticles nucleation surface interactions
  • Geometry and complex manifolds
  • Algorithms and Data Compression
  • DNA and Biological Computing
  • Stochastic processes and financial applications
  • Diffusion and Search Dynamics
  • Numerical methods in inverse problems
  • Nonlinear Partial Differential Equations
  • Computational Physics and Python Applications
  • Advanced Condensed Matter Physics
  • Physics of Superconductivity and Magnetism
  • advanced mathematical theories
  • Advanced Data Storage Technologies
  • semigroups and automata theory

University of California, Los Angeles
2011-2024

Charles University
1999-2019

Wrocław University of Science and Technology
2019

AGH University of Krakow
2019

Center for Theoretical Physics
2018

Sewanee: The University of the South
2012

University of South Bohemia in České Budějovice
2009-2011

Technical University of Munich
2010

University of Warsaw
2005-2009

European Organization for Nuclear Research
2006-2009

10.1007/s00440-006-0498-z article EN Probability Theory and Related Fields 2006-04-24

Recent progress on the understanding of Random Conductance Model is reviewed and commented. A particular emphasis results scaling limit random walk among conductances for almost every realization environment, observations behavior effective resistance as well certain models gradient fields with non-convex interactions. The text an expanded version lecture notes a course delivered at 2011 Cornell Summer School Probability.

10.1214/11-ps190 article EN cc-by Probability Surveys 2011-01-01

We consider the (unoriented) long-range percolation on ℤd in dimensions d≥1, where distinct sites x,y∈ℤd get connected with probability pxy∈[0,1]. Assuming pxy=|x−y|−s+o(1) as |x−y|→∞, s>0 and |⋅| is a norm distance ℤd, supposing that resulting random graph contains an infinite component C∞, we let D(x,y) be between x y measured C∞. Our main result that, for s∈(d,2d), D(x,y)=(log|x−y|)Δ+o(1), x,y∈C∞, Δ−1 binary logarithm of 2d/s o(1) quantity tending to zero |x−y|→∞. Besides its interest...

10.1214/009117904000000577 article EN The Annals of Probability 2004-10-01

We consider the nearest-neighbor simple random walk on $Z^d$, $d\ge2$, driven by a field of i.i.d. conductances $\omega_{xy}\in[0,1]$. Apart from requirement that bonds with positive percolate, we pose no restriction law $\omega$'s. prove that, for a.e. realization environment, path distribution converges weakly to non-degenerate, isotropic Brownian motion. The quenched functional CLT holds despite fact local may fail in $d\ge5$ due anomalously slow decay probability returns starting point...

10.1214/ejp.v12-456 article EN cc-by Electronic Journal of Probability 2007-01-01

10.1007/s00220-015-2565-8 article EN Communications in Mathematical Physics 2016-01-28

We consider the nearest-neighbor simple random walk on $\Z^d$, $d\ge2$, driven by a field of bounded conductances $\omega_{xy}\in[0,1]$. The conductance law is i.i.d. subject to condition that probability $\omega_{xy}>0$ exceeds threshold for bond percolation $\Z^d$. For environments in which origin connected infinity bonds with positive conductances, we study decay $2n$-step return $P_\omega^{2n}(0,0)$. prove $P_\omega^{2n}(0,0)$ constant times $n^{-d/2}$ $d=2,3$, while it $o(n^{-2})$...

10.1214/07-aihp126 article EN Annales de l Institut Henri Poincaré Probabilités et Statistiques 2008-04-01

These are expanded lecture notes for a minicourse taught at the "School on disordered media" Alfred Renyi institute in Budapest, January 2025.

10.48550/arxiv.2502.09853 preprint EN arXiv (Cornell University) 2025-02-13

We consider liquid-vapor systems in finite-volume V⊂d at parameter values corresponding to phase coexistence and study droplet formation due a fixed excess δN of particles above the ambient gas density. identify dimensionless Δ ∼ (δN)(d + 1)/d/V universal value Δc = Δc(d), show that dense occurs whenever > Δc, while, for < is entirely absorbed into gaseous background. When first forms, it comprises non-trivial, fraction particles. Similar reasoning applies generic two-phase including...

10.1209/epl/i2002-00312-y article EN EPL (Europhysics Letters) 2002-10-01

We consider the parabolic Anderson problem $\partial_t u = \kappa\Delta + \xi u$ on $(0,\infty) \times \mathbb{Z}^d$ with random i.i.d. potential $\xi (\xi(z))_{z\in \mathbb{Z}^d}$ and initial condition $u(0,\cdot) \equiv 1$. Our main assumption is that $\mathrm{esssup} \xi(0)=0$. Depending thickness of distribution $\mathrm{Prob} (\xi(0) \in \cdot)$ close to its essential supremum, we identify both asymptotics moments $u(t, 0)$ almost­sure as $t \to \infty$ in terms variational problems. As...

10.1214/aop/1008956688 article EN The Annals of Probability 2001-04-01

We study the classical 120-degree and related orbital models. These are limits of quantum models which describe interactions among orbitals transition-metal compounds. demonstrate that at low temperatures these exhibit a long-range order arises via an "order by disorder" mechanism. This strongly indicates there is ordering in version models, notwithstanding recent rigorous results on absence spin systems.

10.1209/epl/i2004-10134-5 article EN EPL (Europhysics Letters) 2004-09-01

We consider a quenched-disordered heteropolymer, consisting of hydrophobic and hydrophylic monomers, in the vicinity an oil-water interface. The heteropolymer is modeled by directed simple random walk$(i, S_i)_{i\epsilon\mathbb{N}}$ on $\mathbb{N} \times \mathbb{Z}$ with interaction given Hamiltonians $H_n^{\omega}(S) = \lambda \Sigma_{i=1}^n(\omega_i + h)\text{sign}(S_i)(n \epsilon \mathbb{N})$. Here, $\lambda$ h are parameters $(\omega_i)_{i\epsilon\mathbb{N}}$ i.i.d. $\pm1$-valued...

10.1214/aoap/1029962808 article EN The Annals of Applied Probability 1999-08-01

We present a general, rigorous theory of Lee-Yang zeros for models with first-order phase transitions that admit convergent contour expansions. derive formulas the positions and density zeros. In particular, we show that, without symmetry, curves on which lie are generically not circles, can have topologically nontrivial features, such as bifurcation. Our results illustrated in three complex field: low-temperature Ising Blume-Capel models, q-state Potts model large q.

10.1103/physrevlett.84.4794 article EN Physical Review Letters 2000-05-22

10.1007/s00440-006-0013-6 article EN Probability Theory and Related Fields 2007-01-10

We consider gradient fields (ϕx : x∈ℤd) whose law takes the Gibbs–Boltzmann form Z−1exp{−∑〈x, y〉V(ϕy−ϕx)}, where sum runs over nearest neighbors. assume that potential V admits representation V(η):=−log∫ϱ(d κ)exp[−½κη2], ϱ is a positive measure with compact support in (0, ∞). Hence, symmetric, but nonconvex general. While for strictly convex V's, translation-invariant, ergodic Gibbs measures are completely characterized by their tilt, as above may lead to several zero tilt. Still, every...

10.1214/10-aop548 article EN The Annals of Probability 2010-12-03

We study the asymptotic growth of diameter a graph obtained by adding sparse "long" edges to square box in $\Z^d$. focus on cases when an edge between $x$ and $y$ is added with probability decaying Euclidean distance as $|x-y|^{-s+o(1)}$ $|x-y|\to\infty$. For $s\in(d,2d)$ we show that for reduced side $L$ scales like $(\log L)^{\Delta+o(1)}$ where $\Delta^{-1}:=\log_2(2d/s)$. In particular, grows about fast typical two vertices at $L$. also ball radius $r$ intrinsic metric (infinite) will...

10.1002/rsa.20349 article EN Random Structures and Algorithms 2010-10-21

Nous considérons le champ libre gaussien discret (DGFF) dans des domaines DN⊆Z2 qu’on obtient, via une mise à l’échelle par N, partir de raisonnables D⊆R2. étudions les statistiques valeurs d’ordre logN en dessous du maximum absolu. Encodés un processus ponctuel sur D×R, la distribution spatiale ces ensembles niveaux proches D N et (en unités absolu) convergent, pour N→∞, loi vers produit gravité quantique critique Liouville (cLQG) ZD Rayleigh. La convergence est valable conjointement avec...

10.1214/23-aihp1418 article FR Annales de l Institut Henri Poincaré Probabilités et Statistiques 2024-02-01

10.1016/j.jfa.2017.12.002 article EN publisher-specific-oa Journal of Functional Analysis 2017-12-13

Nous considérons le champs Gaussien libre discret (DGFF) sur des versions renormalisées réseau carré de domaines continus suffisamment réguliers $D\subset\mathbb{C}$ et décrivons la limite d'échelle, incluant structure locale, lignes niveau lorsque que hauteur croît comme $\lambda$-fois du maximum absolu, pour tout $\lambda\in(0,1)$. montons que, dans position normalisée d'un point typique $x$ tiré aléatoirement cette ligne a loi mesure Gravité Quantique Liouville (LQG) $D$ avec paramètre...

10.1214/18-aihp939 article FR Annales de l Institut Henri Poincaré Probabilités et Statistiques 2019-11-01
Coming Soon ...