Stefan Sint

ORCID: 0000-0001-7007-2980
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Quantum Chromodynamics and Particle Interactions
  • Particle physics theoretical and experimental studies
  • High-Energy Particle Collisions Research
  • Physics of Superconductivity and Magnetism
  • Black Holes and Theoretical Physics
  • Spectral Theory in Mathematical Physics
  • Quantum, superfluid, helium dynamics
  • Quantum and electron transport phenomena
  • Atomic and Subatomic Physics Research
  • Quantum chaos and dynamical systems
  • Theoretical and Computational Physics
  • Scientific Research and Discoveries
  • Cold Atom Physics and Bose-Einstein Condensates
  • Quantum Mechanics and Non-Hermitian Physics
  • advanced mathematical theories
  • Topological Materials and Phenomena
  • Quantum Mechanics and Applications
  • Radioactive Decay and Measurement Techniques
  • Medical Imaging Techniques and Applications
  • Markov Chains and Monte Carlo Methods
  • X-ray Spectroscopy and Fluorescence Analysis
  • Algebraic and Geometric Analysis
  • Dark Matter and Cosmic Phenomena
  • Inorganic Fluorides and Related Compounds
  • Stochastic processes and financial applications

European Organization for Nuclear Research
2001-2024

University of Wuppertal
2022-2024

Humboldt-Universität zu Berlin
2022-2024

John von Neumann Institute for Computing
2015-2024

Trinity College Dublin
2012-2024

Universitat de València
2022-2024

Deutsches Elektronen-Synchrotron DESY
1994-2024

Instituto de Física Corpuscular
2022-2024

University of Turin
2023

University of Edinburgh
2016

Abstract We review lattice results related to pion, kaon, D -meson, B and nucleon physics with the aim of making them easily accessible nuclear particle communities. More specifically, we report on determination light-quark masses, form factor $$f_+(0)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>f</mml:mi> <mml:mo>+</mml:mo> </mml:msub> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> arising in semileptonic $$K...

10.1140/epjc/s10052-022-10536-1 article EN cc-by The European Physical Journal C 2022-10-04

10.1016/0550-3213(94)90228-3 article EN Nuclear Physics B 1994-06-01

We present a lattice determination of the Λ parameter in three-flavor QCD and strong coupling at Z pole mass. Computing nonperturbative running range from 0.2 to 70 GeV, using experimental input values for masses decay constants pion kaon, we obtain Λ_{MS[over ¯]}^{(3)}=341(12) MeV. The up very high energies guarantees that systematic effects associated with perturbation theory are well under control. Using four-loop prediction ¯]}^{(5)}/Λ_{MS[over ¯]}^{(3)} yields α_{MS[over...

10.1103/physrevlett.119.102001 article EN cc-by Physical Review Letters 2017-09-08

We apply the Symanzik improvement programme to 4+1-dimensional local re-formulation of gradient flow in pure $SU(N)$ lattice gauge theories. show that classical nature equation allows eliminate all cutoff effects at $\mathcal O(a^2)$ which originate either from discretized or observable. All remaining can be understood terms counterterms zero time boundary. classify these and provide a complete set as required for on-shell improvement. Compared 4-dimensional theory only single additional...

10.1140/epjc/s10052-015-3831-9 article EN cc-by The European Physical Journal C 2016-01-01

Abstract Theoretical predictions for particle production cross sections and decays at colliders rely heavily on perturbative Quantum Chromodynamics (QCD) calculations, expressed as an expansion in powers of the strong coupling constant α S . The current <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi class="MJX-tex-calligraphic" mathvariant="script">O</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>%</mml:mo>...

10.1088/1361-6471/ad1a78 article EN cc-by Journal of Physics G Nuclear and Particle Physics 2024-09-01

10.1016/0550-3213(95)00352-s article EN Nuclear Physics B 1995-09-01

Using a finite volume gradient flow renormalization scheme with Schr\"odinger Functional boundary conditions, we compute the nonperturbative running coupling in range $2.2\ensuremath{\lesssim}{\overline{g}}_{\mathrm{GF}}^{2}(L)\ensuremath{\lesssim}13$. Careful continuum extrapolations turn out to be crucial reach our high accuracy. The of is always between one loop and two very close region $200\text{ }\text{...

10.1103/physrevd.95.014507 article EN cc-by Physical review. D/Physical review. D. 2017-01-25

We discuss the determination of strong coupling α_{MS[over ¯]}(m_{Z}) or, equivalently, QCD Λ parameter. Its requires use perturbation theory in α_{s}(μ) some scheme s and at energy scale μ. The higher μ, more accurate becomes, owing to asymptotic freedom. As one step our computation parameter three-flavor QCD, we perform lattice computations a that allows us nonperturbatively reach very high energies, corresponding α_{s}=0.1 below. find (continuum) is there, yielding 3% error parameter,...

10.1103/physrevlett.117.182001 article EN cc-by Physical Review Letters 2016-10-24

We determine the non-perturbatively renormalized axial current for $$\hbox {O}(a)$$ improved lattice QCD with Wilson quarks. Our strategy is based on chirally rotated Schrödinger functional and can be generalized to other finite (ratios of) renormalization constants which are traditionally obtained by imposing continuum chiral Ward identities as normalization conditions. Compared latter we achieve an error reduction up one order of magnitude. results have already enabled setting scale...

10.1140/epjc/s10052-018-6514-5 article EN cc-by The European Physical Journal C 2019-01-01

10.1016/s0920-5632(99)85217-7 article EN Nuclear Physics B - Proceedings Supplements 1999-03-01

10.1088/1126-6708/2002/12/007 article EN Journal of High Energy Physics 2002-12-03

A bstract With Wilson quarks, on-shell O( a ) improvement of the lattice QCD action is achieved by including Sheikholeslami-Wohlert term and two further operators mass dimension 5, which amount to mass-dependent rescaling bare parameters. We here focus on rescaled coupling, $$ {\tilde{g}}_0^2={g}_0^2\left(1+{b}_{\textrm{g}}a{m}_{\textrm{q}}\right) <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mover> <mml:mi>g</mml:mi> <mml:mo>~</mml:mo> </mml:mover>...

10.1007/jhep01(2024)188 article EN cc-by Journal of High Energy Physics 2024-01-31

10.1088/1126-6708/2001/07/048 article EN Journal of High Energy Physics 2001-07-31

10.1088/1126-6708/2004/09/069 article EN Journal of High Energy Physics 2004-09-30
Coming Soon ...