D. d’Enterria
- Particle physics theoretical and experimental studies
- High-Energy Particle Collisions Research
- Quantum Chromodynamics and Particle Interactions
- Particle Detector Development and Performance
- Dark Matter and Cosmic Phenomena
- Cosmology and Gravitation Theories
- Computational Physics and Python Applications
- Neutrino Physics Research
- Astrophysics and Cosmic Phenomena
- Nuclear reactor physics and engineering
- Distributed and Parallel Computing Systems
- Superconducting Materials and Applications
- Black Holes and Theoretical Physics
- Nuclear physics research studies
- Medical Imaging Techniques and Applications
- Particle Accelerators and Free-Electron Lasers
- Nuclear Physics and Applications
- Atomic and Subatomic Physics Research
- Radiation Detection and Scintillator Technologies
- International Science and Diplomacy
- Gamma-ray bursts and supernovae
- Scientific Computing and Data Management
- Cold Atom Physics and Bose-Einstein Condensates
- Radiation Therapy and Dosimetry
- Advanced X-ray and CT Imaging
European Organization for Nuclear Research
2016-2025
Institute of High Energy Physics
2015-2024
University of Antwerp
2024
A. Alikhanyan National Laboratory
2014-2024
Laboratoire Leprince-Ringuet
2009-2024
Paul Scherrer Institute
2014-2023
National Central University
2013-2023
Istanbul University
2020
École Polytechnique
2009-2019
New Mexico State University
2006-2019
Transverse momentum spectra for charged hadrons and neutral pions in the range 1 GeV/c<p(T)<5 GeV/c have been measured by PHENIX experiment at RHIC Au+Au collisions root square[s(NN)] = 130 GeV. At high p(T) from peripheral nuclear are consistent with scaling p+p average number of binary nucleon-nucleon collisions. The central significantly suppressed when compared to binary-scaled expectation, also similarly collisions, indicating a novel nuclear-medium effect energies.
The centrality dependence of transverse momentum distributions and yields for ${\ensuremath{\pi}}^{\ifmmode\pm\else\textpm\fi{}},{K}^{\ifmmode\pm\else\textpm\fi{}},p$, $\overline{p}$ in $\text{Au}+\text{Au}$ collisions at $\sqrt{{s}_{NN}}=200\phantom{\rule{0.3em}{0ex}}\text{GeV}$ midrapidity are measured by the PHENIX experiment Relativistic Heavy Ion Collider. We observe a clear particle mass shapes spectra central below $\ensuremath{\sim}2\phantom{\rule{0.3em}{0ex}}\text{GeV}∕c$ ${p}_{T}$....
The anisotropy parameter (v(2)), the second harmonic of azimuthal particle distribution, has been measured with PHENIX detector in Au+Au collisions at sqrt[s(NN)]=200 GeV for identified and inclusive charged production central rapidities (|eta|<0.35) respect to reaction plane defined high (|eta|=3-4 ). We observe that v(2) mesons falls below (anti)baryons p(T)>2 GeV/c, marked contrast predictions a hydrodynamical model. A quark-coalescence model is also investigated.
The physics programme and the design are described of a new collider for particle nuclear physics, Large Hadron Electron Collider (LHeC), in which newly built electron beam 60 GeV, up to possibly 140 energy collides with intense hadron beams LHC. Compared HERA, kinematic range covered is extended by factor twenty negative four-momentum squared, $Q^2$, inverse Bjorken $x$, while luminosity $10^{33}$ cm$^{-2}$s$^{-1}$ LHeC projected exceed integrated HERA two orders magnitude. devoted an...
Transverse momentum spectra of neutral pions in the range 1<pT<10 GeV/c have been measured at midrapidity by PHENIX experiment BNL RHIC Au+Au collisions sNN=200 GeV. The π0 multiplicity central reactions is significantly below yields same sNN peripheral and p+p scaled number nucleon-nucleon collisions. For most bin, suppression factor ∼2.5 pT=2 increases to ∼4–5 pT≈4 GeV/c. At larger pT, remains constant within errors. deficit already apparent semiperipheral smoothly with centrality.Received...
The PHENIX experiment at the BNL Relativistic Heavy Ion Collider (RHIC) has measured electrons with $0.3<{p}_{T}<9\text{ }\text{ }\mathrm{GeV}/c$ midrapidity ($|y|<0.35$) from heavy-flavor (charm and bottom) decays in $\mathrm{Au}+\mathrm{Au}$ collisions $\sqrt{{s}_{\mathrm{NN}}}=200\text{ }\mathrm{GeV}$. nuclear modification factor ${R}_{\mathrm{AA}}$ relative to $p+p$ shows a strong suppression central collisions, indicating substantial energy loss of heavy quarks medium produced RHIC...
Transverse momentum spectra of charged hadrons with p(T)<8 GeV/c and neutral pions p(T)<10 have been measured at midrapidity by the PHENIX experiment BNL RHIC in d+Au collisions sqrt[s(NN)]=200 GeV. The yields are compared to those p+p same sqrt[s(NN)] scaled up number underlying nucleon-nucleon d+Au. yield ratio does not show suppression observed central Au+Au RHIC. Instead, there is a small enhancement high particles.
The production of low mass e+e- pairs for m_{e+e-} < 300 MeV/c^2 and 1 p_T <5 GeV/c is measured in p+p Au+Au collisions at sqrt(s_NN)=200 GeV. Enhanced yield above hadronic sources observed. Treating the excess as internal conversions, invariant direct photons deduced. In central collisions, photon over exponential transverse momentum, with inverse slope T = 221 +/- 19 (stat) (syst) MeV. Hydrodynamical models initial temperatures ranging from 300--600 MeV times ~ 0.6 - 0.15 fm/c after...
The PHENIX experiment at the BNL Relativistic Heavy Ion Collider (RHIC)has measured $J/\ensuremath{\psi}$ production for rapidities $\ensuremath{-}2.2<y<2.2$ in $\mathrm{Au}+\mathrm{Au}$ collisions $\sqrt{{s}_{NN}}=200\text{ }\text{ }\mathrm{GeV}$. invariant yield and nuclear modification factor ${R}_{AA}$ as a function of centrality,transverse momentum, rapidity are reported. A suppression relative to binary collision scaling proton-protonreaction yields is observed. Models which describe...
Differential measurements of elliptic flow (${v}_{2}$) for $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ collisions at $\sqrt{{s}_{\mathrm{NN}}}=200\text{ }\text{ }\mathrm{GeV}$ are used to test validate predictions from perfect fluid hydrodynamics scaling ${v}_{2}$ with eccentricity, system size, transverse kinetic energy (${\mathrm{KE}}_{T}$). For ${\mathrm{KE}}_{T}\ensuremath{\equiv}{m}_{T}\ensuremath{-}m$ up $\ensuremath{\sim}1\text{ the is compatible hydrodynamic expansion a...
The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV measured properties compatible those Standard-Model Higgs boson, coupled absence discoveries phenomena beyond Standard Model at TeV scale, has triggered interest in ideas for future factories. A circular e+e- collider hosted 80 to 100 km tunnel, TLEP, is among most attractive solutions proposed so far. It clean experimental environment, produces high luminosity top-quark, W Z studies, accommodates multiple...
Azimuthal angle ($\ensuremath{\Delta}\ensuremath{\phi}$) correlations are presented for a broad range of transverse momentum ($0.4<{p}_{T}<10$ GeV/$c$) and centrality (0--92%) selections charged hadrons from dijets in Au+Au collisions at $\sqrt{{s}_{\mathit{NN}}}=200$ GeV. With increasing ${p}_{T}$, the away-side $\ensuremath{\Delta}\ensuremath{\phi}$ distribution evolves relatively flat shape to concave shape, then convex shape. Comparisons with $p+p$ data suggest that can be divided into...
This writeup is a compilation of the predictions for forthcoming Heavy Ion Program at Large Hadron Collider, as presented CERN Theory Institute 'Heavy Collisions LHC - Last Call Predictions', held from May 14th to June 10th 2007.
This report presents the capabilities of CMS experiment to explore rich heavy-ion physics programme offered by CERN Large Hadron Collider (LHC). The collisions lead nuclei at energies , will probe quark and gluon matter unprecedented values energy density. prime goal this research is study fundamental theory strong interaction — Quantum Chromodynamics (QCD) in extreme conditions temperature, density parton momentum fraction (low-x).
For Au + collisions at 200 GeV, we measure neutral pion production with good statistics for transverse momentum, pT, up to 20 GeV/c. A fivefold suppression is found, which essentially constant 5 < pT Experimental uncertainties are small enough constrain any model-dependent parametrization the transport coefficient of medium, e.g., q in parton quenching model. The spectral shape similar all collision classes, and does not saturate collisions.
PHENIX has measured the e^+e^- pair continuum in sqrt(s_NN)=200 GeV Au+Au and p+p collisions over a wide range of mass transverse momenta. The yield is compared to expectations from hadronic sources, based on measurements. In intermediate region, between masses phi J/psi meson, consistent with correlated c^bar-c production, though other mechanisms are not ruled out. low region (below phi) inclusive spectrum well described by known contributions light meson decays. contrast, minimum bias this...
Transverse momentum spectra of electrons (${p}_{T}^{e}$) from semileptonic weak decays heavy-flavor mesons in the range $0.3<{p}_{T}^{e}<9.0$ GeV/$c$ have been measured at midrapidity ($|y|<0.35$) by PHENIX experiment Relativistic Heavy Ion Collider $p+p$ and $\mathrm{Au}+\mathrm{Au}$ collisions $\sqrt{{s}_{\mathrm{NN}}}=200$ GeV. In addition, azimuthal anisotropy parameter ${v}_{2}$ has for $0.3<{p}_{T}^{e}<5.0$ collisions. The substantial modification ${p}_{T}^{e}$ compared with as well...
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured invariant differential cross section for production of ${K}_{S}^{0}$, $\ensuremath{\omega}$, ${\ensuremath{\eta}}^{\ensuremath{'}}$, and $\ensuremath{\phi}$ mesons in $p+p$ collisions $\sqrt{s}=200\text{ }\text{ }\mathrm{GeV}$. Measurements $\ensuremath{\omega}$ different decay channels give consistent results. New results are agreement with previously published data extend ${p}_{T}$ coverage. spectral shapes all...
Abstract With the establishment and maturation of experimental programs searching for new physics with sizeable couplings at LHC, there is an increasing interest in broader particle astrophysics community exploring light feebly-interacting particles as a paradigm complementary to New Physics sector TeV scale beyond. FIPs 2020 has been first workshop fully dedicated was held virtually from 31 August 4 September 2020. The gathered together experts collider, beam dump, fixed target experiments,...
We present the results of an improved Monte Carlo Glauber (MCG) model relevance for collisions involving nuclei at center-of-mass energies BNL Relativistic Heavy Ion Collider ($\sqrt{{s}_{\mathit{NN}}}=0.2$ TeV), CERN Large Hadron (LHC) ($\sqrt{{s}_{\mathit{NN}}}=2.76--8.8\phantom{\rule{0.16em}{0ex}}\mathrm{TeV}$), and proposed future hadron colliders ($\sqrt{{s}_{\mathit{NN}}}\ensuremath{\approx}10--63$ TeV). The inelastic $pp$ cross sections as a function $\sqrt{{s}_{\mathit{NN}}}$ are...