William M. Kantor

ORCID: 0000-0001-7914-6720
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Finite Group Theory Research
  • graph theory and CDMA systems
  • Coding theory and cryptography
  • Geometric and Algebraic Topology
  • Advanced Topics in Algebra
  • Mathematics and Applications
  • Advanced Algebra and Geometry
  • Limits and Structures in Graph Theory
  • semigroups and automata theory
  • Rings, Modules, and Algebras
  • Advanced Algebra and Logic
  • Advanced Graph Theory Research
  • Chronic Lymphocytic Leukemia Research
  • Cooperative Communication and Network Coding
  • Advanced Topology and Set Theory
  • Algebraic structures and combinatorial models
  • Advanced Differential Equations and Dynamical Systems
  • Homotopy and Cohomology in Algebraic Topology
  • Computability, Logic, AI Algorithms
  • advanced mathematical theories
  • Analytic Number Theory Research
  • Cellular Automata and Applications
  • Algebraic Geometry and Number Theory
  • Topological and Geometric Data Analysis
  • Optimal Experimental Design Methods

University of Oregon
2009-2022

Northeastern University
2013-2021

Walter de Gruyter (Germany)
2019-2020

University of Würzburg
2019-2020

Technische Universität Berlin
2019-2020

German-Israeli Cooperation
2020

Boston University
2013

University of Southern California
1973-2010

Cornell University
2010

Hebrew University of Jerusalem
2010

We survey the relationships between two-weight linear [n, k] codes over GF(q), projective (n, k, h1, h2) sets in PG(k − 1, q), and certain strongly regular graphs. also describe tabulate essentially all known examples.

10.1112/blms/18.2.97 article EN Bulletin of the London Mathematical Society 1986-03-01

10.1016/0097-3165(85)90022-6 article EN Journal of Combinatorial Theory Series A 1985-01-01

10.1016/0021-8693(87)90019-6 article EN publisher-specific-oa Journal of Algebra 1987-03-01

10.1016/j.jalgebra.2007.10.028 article EN publisher-specific-oa Journal of Algebra 2008-02-22

10.1007/bf01113919 article Mathematische Zeitschrift 1972-01-01

In an orthogonal vector space of type $\Omega ^ + ( 4n,q )$, a spread is family $q^{2n - 1} 1$ totally singular $2n$-spaces which induces partition the points; these spreads are closely related to Kerdock sets. $2m$-dimensional over $GF q $q^m subspaces dimension m points underlying projective space; correspond affine translation planes. By combining geometric, group theoretic and matrix methods, new types constructed old examples studied. New sets planesare obtained having various...

10.1137/0603015 article EN SIAM Journal on Algebraic and Discrete Methods 1982-06-01

We address the graph isomorphism problem and related fundamental complexity problems of computational group theory. The main results are these: A1. A polynomial time algorithm to test simplicity find composition factors a given permutation (COMP). A2. elements prime order p in divisible by p. A3. reduction finding Sylow subgroups groups (SYLFIND) intersection two cosets (INT). As consequence, one can solvable with bounded nonabelian time. A4. solve SYLFIND for finite simple groups. A5. An...

10.1109/sfcs.1983.10 article EN 1983-11-01

The permutation representations in the title are all determined, and no surprises found to occur.

10.1090/s0002-9947-1976-0422440-8 article EN Transactions of the American Mathematical Society 1976-01-01

All conjugacy classes of subgroups <italic>G</italic> classical groups characteristic <italic>p</italic> are determined, which generated by a class long root elements and satisfy <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O Subscript p Baseline left-parenthesis upper G right-parenthesis less-than-or-slanted-equals prime intersection Z right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD">...

10.1090/s0002-9947-1979-0522265-1 article EN Transactions of the American Mathematical Society 1979-01-01

10.1515/crll.1981.328.39 article EN Journal für die reine und angewandte Mathematik (Crelles Journal) 1981-11-01

The permutation representations in the title are all determined, and no surprises found to occur.

10.1090/s0002-9947-1982-0648077-6 article EN Transactions of the American Mathematical Society 1982-01-01

An ovoid in an orthogonal vector space V of type Ω + (2 n , q ) or Ω(2 – 1, is a set –1 1 pairwise non-perpendicular singular points. Ovoids probably do not exist when &gt; 4 (cf. [ 12 ], 6 ]) and seem to be rare = 4. On the other hand, 3 they correspond affine translation planes order 2 via Klein correspondence between PG (3, (6, quadric. In this paper we will describe examples having Those with arise from (2, ), AG Ree groups. Since each example produces at least one 3, are led new .

10.4153/cjm-1982-082-0 article EN Canadian Journal of Mathematics 1982-10-01

10.1016/0021-8693(80)90214-8 article EN publisher-specific-oa Journal of Algebra 1980-01-01

10.1016/0196-8858(83)90009-x article EN Advances in Applied Mathematics 1983-06-01

10.1016/0097-3165(80)90010-2 article EN publisher-specific-oa Journal of Combinatorial Theory Series A 1980-09-01

10.1016/0021-8693(75)90130-1 article EN publisher-specific-oa Journal of Algebra 1975-01-01

10.1007/bf01111409 article EN Mathematische Zeitschrift 1969-01-01

10.1006/jabr.2000.8357 article EN publisher-specific-oa Journal of Algebra 2000-12-01

10.1016/s0021-8693(03)00411-3 article EN publisher-specific-oa Journal of Algebra 2003-09-12

10.1007/bf01162018 article EN Mathematische Zeitschrift 1986-03-01

10.1016/0097-3165(74)90005-3 article EN publisher-specific-oa Journal of Combinatorial Theory Series A 1974-09-01

Introduction Preliminaries Special linear groups: $\mathrm {PSL} (d,q)$ Orthogonal $\mathrm{P}\Omega^\varepsilon(d,q)$ Symplectic $\mathrm{PSp}(2m,q)$ Unitary $\mathrm{PSU}(d,q)$ Proofs of Theorems 1.1 and 1.1, corollaries 1.2-1.4 Permutation group algorithms Concluding remarks References.

10.1090/memo/0708 article EN Memoirs of the American Mathematical Society 2001-01-01
Coming Soon ...