- Algebraic Geometry and Number Theory
- Advanced Algebra and Geometry
- Algebraic structures and combinatorial models
- Homotopy and Cohomology in Algebraic Topology
- Advanced Topics in Algebra
- Topological and Geometric Data Analysis
- Geometry and complex manifolds
- Polynomial and algebraic computation
- Commutative Algebra and Its Applications
- Periodontal Regeneration and Treatments
- Mathematics and Applications
- Advanced Differential Equations and Dynamical Systems
- Advanced Combinatorial Mathematics
- Oral and gingival health research
- Physics of Superconductivity and Magnetism
- Perovskite Materials and Applications
- Nonlinear Waves and Solitons
- Advanced Photocatalysis Techniques
- Oral microbiology and periodontitis research
- Conducting polymers and applications
Universidade Federal de Minas Gerais
2021-2024
Universidade Estadual de Campinas (UNICAMP)
2008-2023
National Research University Higher School of Economics
2021
Yaroslavl State Pedagogical University
2021
Brazilian Society of Computational and Applied Mathematics
2017-2018
We provide a splitting criterion for supervector bundles over the projective superspaces $\mathbb{P}^{n|m}$. More precisely, we prove that rank $p|q$ bundle on $\mathbb{P}^{n|m}$ with vanishing intermediate cohomology is isomorphic to direct sum of even and odd line bundles, provided $n \geq 2$. For $n=1$ an example cannot be written as bundles.
We present a new family of monads whose cohomology is stable rank two vector bundle on $\mathbb{P}^3$. also study the irreducibility and smoothness together with geometrical description some these families. These facts are used to construct infinite series rational moduli components bundles trivial determinant growing second Chern class. prove that space class equal 5 has exactly three irreducible components.
Abstract In [9], Migliore, Miró-Roig and Nagel proved that if <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>R</m:mi> <m:mo>=</m:mo> <m:mi>𝕂</m:mi> <m:mo></m:mo> <m:mo>[</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mi>z</m:mi> <m:mo>]</m:mo> </m:mrow> </m:math> {R=\mathbb{K}[x,y,z]} , where {\mathbb{K}} is a field of characteristic zero, <m:mi>I</m:mi> <m:mo>(</m:mo> <m:msubsup> <m:mi>L</m:mi> <m:mn>1</m:mn> <m:msub> <m:mi>a</m:mi> </m:msub> </m:msubsup>...
We present a new family of monads whose cohomology is stable rank two vector bundle on $\PP$. also study the irreducibility and smoothness together with geometrical description some these families. Such facts are used to prove that moduli space bundles zero first Chern class second equal 5 has exactly three irreducible components.
Let $A$ be a standard graded $\mathbb{K}$-algebra of finite type over an algebraically closed field characteristic zero. We use apolarity to construct, for each degree $k$, projective variety whose osculating defect in $s$ is equivalent the non maximality rank multiplication map power general linear form $\times L^{k-s}: A_s \to A_k$. In Artinian case, this notion corresponds failure Strong Lefschetz property $A$, which allows reobtain some foundational theorems field. It also implies SLP...
Molecular Flexibility Impacts the Formation of 2D/3D Perovskite Heterointerfaces and Device EfficiencyCharles Almeida a, Lucas Scalon b, André Fonseca Paulo Marchezi c, Caio Oliveira Luiz Fernando Zagonel Ana Flávia Nogueira ba Gleb Wataghin Institute Physics, University Campinas, São 13083-859, Brazilb Chemistry, 13083-970, Brazilc California San Diego, 92093-0021, United States AmericaMaterials for Sustainable Development Conference (MATSUS)Proceedings MATSUS Spring 2024 (MATSUS24)#2Dpero...
We study the spectrum of rank $2$ torsion free sheaves on $\mathbb{P}^3$ with aim producing examples distinct irreducible components moduli space same spetrcum answering question presented by Rao for case sheaves. In order to do so, we provide a full description in semistable Chern classes $(c_1, c_2,c_3)$ equals $(-1,2,0)$ and $(0,3,0)$.
We study the spectrum of rank 2 torsion free sheaves on P 3 with aim producing examples distinct irreducible components moduli space same answering a question addressed in [15] for case sheaves.In order to do so, we provide full description semistable Chern classes (c 1 , c ) equals (-1, 2, 0) and (0, 3, 0).
Представлены новые семейства монад, когомологиями которых являются стабильные векторные расслоения ранга 2 на $\mathbb{P}^3$. Изучаются вопросы неприводимости и гладкости некоторых из этих семейств дано их геометрическое описание. Эти факты используются для построения новой бесконечной серии рациональных компонент пространств модулей стабильных векторных расслоений с тривиальным детерминантом растущим вторым классом Черна. Доказано, что пространство Черна, равным 5, имеет в точности три...