S. Böser

ORCID: 0000-0002-5918-4890
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Astrophysics and Cosmic Phenomena
  • Neutrino Physics Research
  • Particle physics theoretical and experimental studies
  • Dark Matter and Cosmic Phenomena
  • High-Energy Particle Collisions Research
  • Radio Astronomy Observations and Technology
  • Particle Detector Development and Performance
  • Quantum Chromodynamics and Particle Interactions
  • Gamma-ray bursts and supernovae
  • Pulsars and Gravitational Waves Research
  • Radiation Detection and Scintillator Technologies
  • Radio Wave Propagation Studies
  • Ionosphere and magnetosphere dynamics
  • Gyrotron and Vacuum Electronics Research
  • Particle accelerators and beam dynamics
  • Solar and Space Plasma Dynamics
  • Cosmology and Gravitation Theories
  • advanced mathematical theories
  • Muon and positron interactions and applications
  • Computational Physics and Python Applications
  • Atomic and Subatomic Physics Research
  • Cryospheric studies and observations
  • Atmospheric Ozone and Climate
  • Scientific Research and Discoveries
  • Radio, Podcasts, and Digital Media

Johannes Gutenberg University Mainz
2016-2025

Southern University and Agricultural and Mechanical College
2021-2024

Clark Atlanta University
2021-2024

University of Alaska Anchorage
2021-2024

Providence College
2021-2024

The University of Texas at Arlington
2021-2024

University of Washington
2023-2024

Lawrence Berkeley National Laboratory
2024

University of California, Irvine
2017-2021

Michigan State University
2021

A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided first evidence a neutrino flux of extraterrestrial origin. Results from an analysis using same methods with third year (2012-2013) data complete are consistent previously reported astrophysical in 100 TeV - PeV range at level $10^{-8}\, \mathrm{GeV}\, \mathrm{cm}^{-2}\, \mathrm{s}^{-1}\, \mathrm{sr}^{-1}$ per flavor reject purely atmospheric explanation combined 3-year $5.7 \sigma$. The...

10.1103/physrevlett.113.101101 article EN Physical Review Letters 2014-09-02

We report on the observation of two neutrino-induced events which have an estimated deposited energy in IceCube detector 1.04±0.16 and 1.14±0.17 PeV, respectively, highest neutrino energies observed so far. These are consistent with fully contained particle showers induced by neutral-current ν(e,μ,τ) (ν(e,μ,τ)) or charged-current ν(e) (ν(e)) interactions within detector. The were discovered a search for ultrahigh neutrinos using data corresponding to 615.9 days effective live time. expected...

10.1103/physrevlett.111.021103 article EN Physical Review Letters 2013-07-08

The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at South Pole. Construction of IceCube, largest to date, was completed in 2011 and enabled discovery astrophysical neutrinos. We describe here design, production, calibration digital optical module (DOM), cable systems, computing hardware, our methodology for drilling deployment. also online triggering data filtering systems that select candidate cosmic ray events analysis. Due...

10.1088/1748-0221/12/03/p03012 article EN Journal of Instrumentation 2017-03-14

We have remotely mapped optical scattering and absorption in glacial ice at the South Pole for wavelengths between 313 560 nm depths 1100 2350 m. used pulsed continuous light sources embedded with AMANDA neutrino telescope, an array of more than six hundred photomultiplier tubes buried deep ice. At greater 1300 m, both coefficient absorptivity follow vertical variations concentration dust impurities, which are seen cores from other Antarctic sites track climatological changes. The varies by...

10.1029/2005jd006687 article EN Journal of Geophysical Research Atmospheres 2006-07-08

ABSTRACT The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using events with interaction vertices contained within the instrumented volume of detector. We present complementary measurement charged current muon where vertex can be outside this volume. As consequence large range effective area is significantly larger but field view restricted to Northern Hemisphere. data from 2009 through 2015 have been analyzed likelihood approach based on...

10.3847/0004-637x/833/1/3 article EN The Astrophysical Journal 2016-12-01

Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search neutrino events deposited energies TeV and interaction vertices inside instrumented volume. Recent analyses suggest that extends to lower is also visible throughgoing, νμ-induced tracks from Northern Hemisphere. Here, we combine results six different astrophysical maximum-likelihood analysis. combined event sample...

10.1088/0004-637x/809/1/98 article EN The Astrophysical Journal 2015-08-13

This Letter presents the results from pointlike neutrino source searches using ten years of IceCube data collected between April 6, 2008 and July 10, 2018. We evaluate significance an astrophysical signal a looking for excess clustered events with energies typically above ∼1 TeV among background atmospheric muons neutrinos. perform full-sky scan, search within selected catalog, catalog population study, three stacked Galactic searches. The most significant point in northern hemisphere...

10.1103/physrevlett.124.051103 article EN publisher-specific-oa Physical Review Letters 2020-02-06

Results from the IceCube Neutrino Observatory have recently provided compelling evidence for existence of a high energy astrophysical neutrino flux utilizing dominantly Southern Hemisphere data set consisting primarily ν(e) and ν(τ) charged-current neutral-current (cascade) interactions. In analysis presented here, sample approximately 35,000 muon neutrinos Northern sky is extracted taken during 659.5 days live time recorded between May 2010 2012. While this composed produced by cosmic ray...

10.1103/physrevlett.115.081102 article EN publisher-specific-oa Physical Review Letters 2015-08-20

The IceCube Neutrino Observatory has established the existence of a high-energy all-sky neutrino flux astrophysical origin. This discovery was made using events interacting within fiducial region detector surrounded by an active veto and with reconstructed energy above 60 TeV, commonly known as starting event sample, or HESE. We revisit analysis HESE sample additional 4.5 years data, newer glacial ice models, improved systematics treatment. paper describes in detail, reports on latest...

10.1103/physrevd.104.022002 article EN Physical review. D/Physical review. D. 2021-07-08

The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV-PeV) neutrinos produced in distant astrophysical objects. A $\ensuremath{\gtrsim}100\text{ }\text{ }\mathrm{TeV}$ interacting inside the instrumented volume has recently provided evidence an isotropic flux of such neutrinos. At lower energies, collects large numbers from weak decays mesons cosmic-ray air showers. Here we present results a neutrino interactions IceCube's between 1 TeV and PeV 641 days data...

10.1103/physrevd.91.022001 article EN publisher-specific-oa Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D, Particles, fields, gravitation, and cosmology 2015-01-05

Since the recent detection of an astrophysical flux high energy neutrinos, question its origin has not yet fully been answered. Much what is known about this comes from a small event sample neutrino purity, good resolution, but large angular uncertainties. In searches for point-like sources, on other hand, best performance given by using statistics and reconstructions. Track-like muon events produced in interactions satisfy these requirements. We present here results sources with neutrinos...

10.3847/1538-4357/835/2/151 article EN The Astrophysical Journal 2017-01-24

Accurate measurement of neutrino energies is essential to many the scientific goals large-volume telescopes. The fundamental observable in such detectors Cherenkov light produced by transit through a medium charged particles created interactions. amount emitted proportional deposited energy, which approximately equal energy for νe and νμ charged-current interactions can be used set lower bound on measure spectra statistically other channels. Here we describe methods performance...

10.1088/1748-0221/9/03/p03009 article EN Journal of Instrumentation 2014-03-17

We report on the first measurement of astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010-2015. Assuming standard oscillations, neutrinos this dedicated cascade sample are dominated (∼90%) by electron and tau flavors. The flux, observed sensitive energy range 16 TeV to 2.6 PeV, is consistent with a single power-law model as expected Fermi-type acceleration high particles at sources. find spectral index be γ=2.53±0.07 normalization for each flavor...

10.1103/physrevlett.125.121104 article EN Physical Review Letters 2020-09-17

The IceCube neutrino telescope at the South Pole has measured atmospheric muon spectrum as a function of zenith angle and energy in approximate 320 GeV to 20 TeV range, search for oscillation signatures light sterile neutrinos. No evidence anomalous $\nu_\mu$ or $\bar{\nu}_\mu$ disappearance is observed either two independently developed analyses, each using one year data. New exclusion limits are placed on parameter space 3+1 model, which antineutrinos would experience strong MSW-resonant...

10.1103/physrevlett.117.071801 article EN publisher-specific-oa Physical Review Letters 2016-08-08

We report a quasidifferential upper limit on the extremely-high-energy (EHE) neutrino flux above $5\ifmmode\times\else\texttimes\fi{}{10}^{6}\text{ }\text{ }\mathrm{GeV}$ based an analysis of nine years IceCube data. The astrophysical measured by extends to PeV energies, and it is background when searching for independent signal at higher such as cosmogenic signal. have developed new method place robust limits EHE in presence background, whose spectrum has yet be understood with high...

10.1103/physrevd.98.062003 article EN publisher-specific-oa Physical review. D/Physical review. D. 2018-09-12

We present results from an analysis looking for dark matter annihilation in the Sun with IceCube neutrino telescope. Gravitationally trapped Sun's core can annihilate into Standard Model particles making a source of GeV neutrinos. is able to detect neutrinos energies >100 while its low-energy infill array DeepCore extends this >10 GeV. This uses data gathered austral winters between May 2011 and 2014, corresponding 532 days livetime when Sun, being below horizon, up-going events, easiest...

10.1140/epjc/s10052-017-4689-9 article EN cc-by The European Physical Journal C 2017-03-01

10.1016/j.ppnp.2019.103736 article EN publisher-specific-oa Progress in Particle and Nuclear Physics 2019-11-02

The origin of high-energy cosmic rays, atomic nuclei that continuously impact Earth's atmosphere, has been a mystery for over century. Due to deflection in interstellar magnetic fields, rays from the Milky Way arrive at Earth random directions. However, near their sources and during propagation, interact with matter produce neutrinos. We search neutrino emission using machine learning techniques applied ten years data IceCube Neutrino Observatory. identify Galactic plane 4.5$σ$ level...

10.1126/science.adc9818 article EN Science 2023-06-29

Abstract We present a measurement of the high-energy astrophysical muon–neutrino flux with IceCube Neutrino Observatory. The uses high-purity selection 650k neutrino-induced muon tracks from northern celestial hemisphere, corresponding to 9.5 yr experimental data. With respect previous publications, is improved by increased size event sample and extended model testing beyond simple power-law hypotheses. An updated treatment systematic uncertainties atmospheric background fluxes has been...

10.3847/1538-4357/ac4d29 article EN cc-by The Astrophysical Journal 2022-03-01
Coming Soon ...