Mathieu Liedloff

ORCID: 0000-0003-2518-606X
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Advanced Graph Theory Research
  • Complexity and Algorithms in Graphs
  • Graph Labeling and Dimension Problems
  • Optimization and Search Problems
  • Scheduling and Optimization Algorithms
  • Limits and Structures in Graph Theory
  • Interconnection Networks and Systems
  • graph theory and CDMA systems
  • Algorithms and Data Compression
  • Advanced Manufacturing and Logistics Optimization
  • Optimization and Packing Problems
  • Bayesian Modeling and Causal Inference
  • Data Management and Algorithms
  • Scheduling and Timetabling Solutions
  • Machine Learning and Algorithms
  • Coding theory and cryptography
  • Mathematics and Applications
  • Assembly Line Balancing Optimization
  • Graph theory and applications
  • Digital Image Processing Techniques
  • Computational Drug Discovery Methods
  • Computational Geometry and Mesh Generation
  • semigroups and automata theory
  • Advanced Optimization Algorithms Research
  • Mathematical Dynamics and Fractals

Université d'Orléans
2011-2022

Laboratoire d'Informatique Fondamentale d'Orléans
2010-2022

Laboratoire d’Informatique Fondamentale de Marseille
2009-2019

Centre Val de Loire
2014-2018

Institut National des Sciences Appliquées Centre Val de Loire
2014-2018

Laboratoire de Mathématiques Analyse, Probabilités, Modélisation Orléans
2017

Laboratoire de Statistique Théorique et Appliquée
2007

Laboratoire Matériaux Optiques, Photonique et Systèmes
2006-2007

Université de Lorraine
2007

10.1016/j.dam.2008.01.011 article EN publisher-specific-oa Discrete Applied Mathematics 2008-03-12

10.1016/j.tcs.2014.11.006 article EN publisher-specific-oa Theoretical Computer Science 2014-11-16

10.1016/j.tcs.2009.11.012 article EN publisher-specific-oa Theoretical Computer Science 2009-11-28

10.1016/j.jda.2011.03.006 article EN publisher-specific-oa Journal of Discrete Algorithms 2011-04-14

10.1016/j.ipl.2008.02.009 article EN Information Processing Letters 2008-03-07

The Capacitated Dominating Set problem is the of finding a dominating set minimum cardinality where each vertex has been assigned bound on number vertices it capacity to dominate. Cygan et al. showed in 2009 that this can be solved $O(n^3 m {{n} \choose {n/3}})$ or O *(1.89 n ) time using maximum matching algorithm. An alternative way solve use dynamic programming over subsets. By exploiting structural properties instances not fast by approach, and "hiding" additional cost related...

10.1016/j.dam.2012.10.021 article EN publisher-specific-oa Discrete Applied Mathematics 2014-05-01

The minimum dominating set problem remains NP-hard when restricted to any of the following graph classes: c -dense graphs, chordal 4-chordal weakly and circle graphs. Developing using a general approach, for each these classes we present an exponential time algorithm solving faster than best known Our algorithms have running time: O (1.4124 n ) (1.4776 (1.4845 (1.4887 (1.2273 (1+√1−2

10.1145/1644015.1644024 article EN ACM Transactions on Algorithms 2009-12-01

10.1016/j.tcs.2007.06.014 article EN publisher-specific-oa Theoretical Computer Science 2007-07-08

10.1016/j.dam.2014.01.011 article EN publisher-specific-oa Discrete Applied Mathematics 2014-02-02
Coming Soon ...