Hamza Mekhzoum

ORCID: 0000-0003-4499-9306
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Advanced Vision and Imaging
  • Image Processing Techniques and Applications
  • Medical Image Segmentation Techniques
  • Cell Image Analysis Techniques
  • Remote Sensing and LiDAR Applications
  • 3D Shape Modeling and Analysis
  • Advanced Neural Network Applications
  • Medical Imaging and Analysis
  • Advanced Image Processing Techniques

Vrije Universiteit Brussel
2022-2024

Jianning Li Zongwei Zhou Jiancheng Yang Antonio Pepe Christina Gsaxner and 95 more Gijs Luijten Chongyu Qu Tiezheng Zhang Xiaoxi Chen Wenxuan Li Marek Wodziński Paul Friedrich Kangxian Xie Yuan Jin Narmada Ambigapathy Enrico Nasca Naida Solak Gian Marco Melito Viet Duc Vu Afaque Rafique Memon Christopher M. Schlachta Sandrine de Ribaupierre Rajni V. Patel Roy Eagleson Xiaojun Chen Heinrich Mächler Jan S. Kirschke Ezequiel de la Rosa Patrick Ferdinand Christ Hongwei Li David Ellis Michele R. Aizenberg Sergios Gatidis Thomas Küstner Nadya Shusharina Nicholas Heller Vincent Andrearczyk Adrien Depeursinge Mathieu Hatt Anjany Sekuboyina Maximilian T. Löffler Hans Liebl Reuben Dorent Tom Vercauteren Jonathan Shapey Aaron Kujawa S. Cornelissen Patrick Langenhuizen Achraf Ben-Hamadou Ahmed Rekik Sergi Pujades Edmond Boyer Federico Bolelli Costantino Grana Luca Lumetti Hamidreza Salehi Jun Ma Yao Zhang Ramtin Gharleghi Susann Beier Arcot Sowmya Eduardo A. Garza‐Villarreal Thania Balducci Diego Ángeles-Valdéz Roberto Martins de Souza Letícia Rittner Richard Frayne Yuanfeng Ji Vincenzo Ferrari Soumick Chatterjee Florian Dubost Stefanie Schreiber Hendrik Mattern Oliver Speck Daniel Haehn Christoph John Andreas Nürnberger João Pedrosa Carlos Ferreira Guilherme Aresta A. Cunha Aurélio Campilho Yannick Suter José García Alain Lalande Vicky Vandenbossche Aline Van Oevelen Kate Duquesne Hamza Mekhzoum Jef Vandemeulebroucke Emmanuel Audenaert Claudia Krebs Timo van Leeuwen Evie Vereecke Hauke Heidemeyer Rainer Röhrig Frank Hölzle Vahid Badeli Kathrin Krieger Matthias Gunzer

Abstract Objectives The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models used. This seen growing popularity of ShapeNet (51,300 models) Princeton ModelNet (127,915 models). However, a large collection anatomical shapes (e.g., bones, organs, vessels) 3D surgical instruments missing. Methods We present MedShapeNet translate...

10.1515/bmt-2024-0396 article EN Biomedical Engineering / Biomedizinische Technik 2024-12-29

Abstract We ask whether Adversariality in left-right stereo images can learn to estimate an optimal depth map through a consensus-based loss function and ego-motion. describe the workflow as merging supervised learning (AS) unsupervised (U) models. The model optimizes estimation network with prior knowledge of ground-truth maps. Inspired by recent works on adversarial neural networks, we formulate task. Thus generate two maps from images, respectively. Based their behavior–that is, function,...

10.21203/rs.3.rs-1827874/v1 preprint EN cc-by Research Square (Research Square) 2022-07-13

Abstract We ask whether Adversariality in left-right stereo images can learn toestimate an optimal depth map through a consensus-based loss func-tion and ego-motion. describe the workow as merging supervisedlearning (AS) unsupervised learning (U). The supervised learningmodel optimizes estimation network with prior knowledge ofground-truth maps. Inspired by recent works on adversarialneural networks, we formulate model adversariallearning task. Thus generate two maps from stereoimages,...

10.21203/rs.3.rs-1827874/v2 preprint EN cc-by Research Square (Research Square) 2022-07-29
Coming Soon ...