Yuhong Wen

ORCID: 0009-0005-4227-221X
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Privacy-Preserving Technologies in Data
  • COVID-19 diagnosis using AI
  • Stochastic Gradient Optimization Techniques
  • Multimodal Machine Learning Applications
  • Artificial Intelligence in Healthcare and Education
  • Topic Modeling
  • Digital Radiography and Breast Imaging
  • Cryptography and Data Security
  • AI in cancer detection
  • Global Cancer Incidence and Screening
  • Big Data Technologies and Applications

Nvidia (United States)
2020-2021

Ittai Dayan Holger R. Roth Aoxiao Zhong Ahmed Harouni Amilcare Gentili and 94 more Anas Z. Abidin Andy Liu Anthony Costa Bradford J. Wood Chien‐Sung Tsai Chih‐Hung Wang Chun‐Nan Hsu C. K. Lee Peiying Ruan Daguang Xu Dufan Wu Eddie Huang Felipe Kitamura Griffin Lacey Gustavo César de Antônio Corradi Gustavo Niño Hao-Hsin Shin Hirofumi Obinata Hui Ren Jason C. Crane Jesse Tetreault Jiahui Guan John W. Garrett Joshua Kaggie Jung Gil Park Keith J. Dreyer Krishna Juluru Kristopher Kersten Marcio Aloísio Bezerra Cavalcanti Rockenbach Marius George Linguraru Masoom A. Haider Meena AbdelMaseeh Nicola Rieke Pablo F. Damasceno Pedro Mário Cruz e Silva Po‐Chuan Wang Sheng Xu Shuichi Kawano Sira Sriswasdi Soo Young Park Thomas M. Grist Varun Buch Watsamon Jantarabenjakul Weichung Wang Won Young Tak Xiang Li Xihong Lin Young Joon Kwon Abood Quraini Andrew Feng Andrew N. Priest Barış Türkbey Benjamin S. Glicksberg Bernardo C. Bizzo Byung Seok Kim Carlos Tor-Díez Chia‐Cheng Lee Chia‐Jung Hsu Chin Lin Chiu-Ling Lai Christopher P. Hess Colin B. Compas Deepeksha Bhatia Eric K. Oermann Evan Leibovitz Hisashi Sasaki Hitoshi Mori Isaac Yang Jae Ho Sohn Krishna Nand Keshava Murthy Li‐Chen Fu Matheus R. F. Mendonça Mike Fralick Min Kyu Kang Mohammad Adil Natalie Gangai Peerapon Vateekul Pierre Elnajjar Sarah Hickman Sharmila Majumdar Shelley McLeod Sheridan Reed Stefan Gräf Stephanie A. Harmon Tatsuya Kodama Thanyawee Puthanakit Tony Mazzulli Vitor Lima de Lavor Yothin Rakvongthai Yu Rim Lee Yuhong Wen Fiona J. Gilbert Mona G. Flores Quanzheng Li

Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining anonymity, thus removing many barriers to sharing. Here we 20 institutes across the globe train FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts future oxygen requirements of symptomatic patients COVID-19 using inputs vital signs, laboratory and X-rays. achieved an average area under curve (AUC) >0.92 predicting...

10.1038/s41591-021-01506-3 article EN other-oa Nature Medicine 2021-09-15
Mona G. Flores Ittai Dayan Holger R. Roth Aoxiao Zhong Ahmed Harouni and 93 more Amilcare Gentili Anas Z. Abidin Andy Liu Anthony Costa Bradford J. Wood Chien‐Sung Tsai Chih‐Hung Wang Chun‐Nan Hsu CK Lee Colleen Ruan Daguang Xu Dufan Wu Eddie Huang Felipe Kitamura Griffin Lacey Gustavo César de Antônio Corradi Hao-Hsin Shin Hirofumi Obinata Hui Ren Jason C. Crane Jesse Tetreault Jiahui Guan John W. Garrett Jung Gil Park Keith Dreyer Krishna Juluru Kristopher Kersten Marcio Aloísio Bezerra Cavalcanti Rockenbach Marius George Linguraru Masoom A. Haider Meena AbdelMaseeh Nicola Rieke Pablo F. Damasceno Pedro Mário Cruz e Silva Po‐Chuan Wang Sheng Xu Shuichi Kawano Sira Sriswa Soo Young Park Thomas M. Grist Varun Buch Watsamon Jantarabenjakul Weichung Wang Won Young Tak Xiang Li Xihong Lin Fred Kwon Fiona J. Gilbert Joshua Kaggie Quanzheng Li Abood Quraini Andrew Feng Andrew N. Priest Barış Türkbey Benjamin S. Glicksberg Bernardo C. Bizzo Byung Seok Kim Carlos Tor-Díez Chia‐Cheng Lee Chia‐Jung Hsu Chin Lin Chiu-Ling Lai Christopher P. Hess Colin B. Compas Deepi Bhatia Eric K. Oermann Evan Leibovitz Hisashi Sasaki Hitoshi Mori Isaac Yang Jae Ho Sohn Krishna Nand Keshava Murthy Li‐Chen Fu Matheus R. F. Mendonça Mike Fralick Min Kyu Kang Mohammad Adil Natalie Gangai Peerapon Vateekul Pierre Elnajjar Sarah Hickman Sharmila Majumdar Shelley McLeod Sheridan Reed Stefan Gräf Stephanie A. Harmon Tatsuya Kodama Thanyawee Puthanakit Tony Mazzulli Vitor de Lima Lavor Yothin Rakvongthai Yu Rim Lee Yuhong Wen

Abstract ‘Federated Learning’ (FL) is a method to train Artificial Intelligence (AI) models with data from multiple sources while maintaining anonymity of the thus removing many barriers sharing. During SARS-COV-2 pandemic, 20 institutes collaborated on healthcare FL study predict future oxygen requirements infected patients using inputs vital signs, laboratory data, and chest x-rays, constituting “EXAM” (EMR CXR AI Model) model. EXAM achieved an average Area Under Curve (AUC) over 0.92,...

10.21203/rs.3.rs-126892/v1 preprint EN cc-by Research Square (Research Square) 2021-01-08

In the ever-evolving landscape of artificial intelligence (AI) and large language models (LLMs), handling leveraging data effectively has become a critical challenge. Most state-of-the-art machine learning algorithms are data-centric. However, as lifeblood model performance, necessary cannot always be centralized due to various factors such privacy, regulation, geopolitics, copyright issues, sheer effort required move vast datasets. this paper, we explore how federated enabled by NVIDIA...

10.48550/arxiv.2402.07792 preprint EN arXiv (Cornell University) 2024-02-12

Several open-source systems, such as Flower and NVIDIA FLARE, have been developed in recent years while focusing on different aspects of federated learning (FL). is dedicated to implementing a cohesive approach FL, analytics, evaluation. Over time, has cultivated extensive strategies algorithms tailored for FL application development, fostering vibrant community research industry. Conversely, FLARE prioritized the creation an enterprise-ready, resilient runtime environment explicitly...

10.48550/arxiv.2407.00031 preprint EN arXiv (Cornell University) 2024-05-21

Detecting clinically relevant objects in medical images is a challenge despite large datasets due to the lack of detailed labels. To address label issue, we utilize scene-level labels with detection architecture that incorporates natural language information. We present challenging new set radiologist paired bounding box and annotations on publicly available MIMIC-CXR dataset especially focussed pneumonia pneumothorax. Along dataset, joint vision weakly supervised transformer layer-selected...

10.48550/arxiv.2007.15778 preprint EN other-oa arXiv (Cornell University) 2020-01-01
Coming Soon ...