D. W. Hertzog

ORCID: 0000-0001-5614-6824
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Particle physics theoretical and experimental studies
  • Quantum Chromodynamics and Particle Interactions
  • High-Energy Particle Collisions Research
  • Muon and positron interactions and applications
  • Particle Detector Development and Performance
  • Superconducting Materials and Applications
  • Neutrino Physics Research
  • Dark Matter and Cosmic Phenomena
  • Radiation Detection and Scintillator Technologies
  • Atomic and Subatomic Physics Research
  • Computational Physics and Python Applications
  • Atomic and Molecular Physics
  • Particle accelerators and beam dynamics
  • Particle Accelerators and Free-Electron Lasers
  • Nuclear physics research studies
  • X-ray Spectroscopy and Fluorescence Analysis
  • Advanced NMR Techniques and Applications
  • Nuclear Physics and Applications
  • Astrophysics and Cosmic Phenomena
  • Radioactive Decay and Measurement Techniques
  • Scientific Research and Discoveries
  • Quantum and Classical Electrodynamics
  • Distributed and Parallel Computing Systems
  • Advanced Chemical Physics Studies
  • Noncommutative and Quantum Gravity Theories

California University of Pennsylvania
2024

University of Washington
2011-2023

University of Missouri–Kansas City
2019

Saint Luke's Health System
2019

Seattle University
2015-2018

University of Illinois Urbana-Champaign
2002-2015

University of Illinois System
1989-2013

Forschungszentrum Jülich
1997-2000

Uppsala University
1991-2000

Carnegie Mellon University
1985-2000

We present the final report from a series of precision measurements muon anomalous magnetic moment, ${a}_{\ensuremath{\mu}}=(g\ensuremath{-}2)/2$. The details experimental method, apparatus, data taking, and analysis are summarized. Data obtained at Brookhaven National Laboratory, using nearly equal samples positive negative muons, were used to deduce ${a}_{\ensuremath{\mu}}(\mathrm{\text{Expt}})=11659208.0(5.4)(3.3)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}10}$, where...

10.1103/physrevd.73.072003 article EN Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D, Particles, fields, gravitation, and cosmology 2006-04-07
Tadayoshi Aoyama Nils Asmussen M. Benayoun Johan Bijnens Thomas Blum and 95 more Mattia Bruno I. Caprini C. M. Carloni Calame Marco Cè Gilberto Colangelo F. Curciarello H. Czyż Igor Danilkin M. Davier C. T. H. Davies Michele Della Morte S.I. Eidelman A. X. El-Khadra Antoine Gérardin D. Giusti Maarten Golterman Steven Gottlieb Vera Gülpers Franziska Hagelstein Masashi Hayakawa Gregorio Herdoíza D. W. Hertzog A. Hoecker Martin Hoferichter Bai-Long Hoid Renwick J. Hudspith F.V. Ignatov Taku Izubuchi F. Jegerlehner Luchang Jin Alexander Keshavarzi T. Kinoshita Bastian Kubis A. Kupich A. Kupść Laetitia Laub Christoph Lehner Laurent Lellouch I.B. Logashenko B. Malaescu Kim Maltman Marina Krstić Marinković Pere Masjuan Aaron S. Meyer Harvey B. Meyer T. Mibe K. Miura S. Müller M. Nio Daisuke Nomura Andreas Nyffeler Vladimir Pascalutsa M. Passera E. Pérez del Río Santiago Peris Antonin Portelli Massimiliano Procura C. F. Redmer B. L. Roberts Pablo Sánchez-Puertas S. I. Serednyakov B. Shwartz Silvano Simula Dominik Stöckinger Hyejung Stöckinger-Kim Peter Stoffer T. Teubner R. G. Van de Water Marc Vanderhaeghen G. Venanzoni Georg von Hippel Hartmut Wittig Z. Zhang М. Н. Ачасов Adnan Bashir Nuno Cardoso Bipasha Chakraborty En-Hung Chao Jérôme Charles Andreas Crivellin Oleksandra Deineka A. G. Denig Carleton DeTar C. A. Domínguez A. E. Dorokhov В. П. Дружинин Gernot Eichmann Matteo Fael Christian S. Fischer Elvira Gámiz Zechariah Gelzer Jeremy Green Saïda Guellati-Khélifa D. Hatton Nils Hermansson–Truedsson

We review the present status of Standard Model calculation anomalous magnetic moment muon. This is performed in a perturbative expansion fine-structure constant $\alpha$ and broken down into pure QED, electroweak, hadronic contributions. The QED contribution by far largest has been evaluated up to including $\mathcal{O}(\alpha^5)$ with negligible numerical uncertainty. electroweak suppressed $(m_\mu/M_W)^2$ only shows at level seventh significant digit. It two loops known better than one...

10.1016/j.physrep.2020.07.006 article EN cc-by-nc-nd Physics Reports 2020-08-14

The anomalous magnetic moment of the negative muon has been measured to a precision 0.7 ppm (ppm) at Brookhaven Alternating Gradient Synchrotron. This result is based on data collected in 2001, and over an order magnitude more precise than previous measurement for muon. a(mu(-))=11 659 214(8)(3) x 10(-10) (0.7 ppm), where first uncertainty statistical second systematic, consistent with measurements anomaly positive average a(mu)(exp)=11 208(6) (0.5 ppm).

10.1103/physrevlett.92.161802 article EN Physical Review Letters 2004-04-23

Three independent searches for an electric dipole moment (EDM) of the positive and negative muons have been performed, using spin precession data from muon g-2 storage ring at Brookhaven National Laboratory. Details on experimental apparatus three analyses are presented. Since individual results muon, as well combined result, d=-0.1(0.9)E-19 e-cm, all consistent with zero, we set a new EDM limit, |d| < 1.9E-19 e-cm (95% C.L.). This represents factor 5 improvement over previous best limit EDM.

10.1103/physrevd.80.052008 article EN Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D, Particles, fields, gravitation, and cosmology 2009-09-21

We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. have analyzed more than 4 times number positrons decay our previous result 2018 data. The systematic error is reduced by factor 2 due to better running conditions, stable beam, improved knowledge field weighted distribution, ω[over ˜]_{p}^{'}, anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From ratio...

10.1103/physrevlett.131.161802 article EN cc-by Physical Review Letters 2023-10-17

The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $ω_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run 2018. When combined a precision measurement magnetic field experiment's ring, determines anomaly $a_μ({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm). This article describes...

10.1103/physrevd.103.072002 article EN cc-by Physical review. D/Physical review. D. 2021-04-07

The Fermi National Accelerator Laboratory has measured the anomalous precession frequency $a^{}_\mu = (g^{}_\mu-2)/2$ of muon to a combined precision 0.46 parts per million with data collected during its first physics run in 2018. This paper documents measurement magnetic field storage ring. is monitored by nuclear resonance systems and calibrated terms equivalent proton spin spherical water sample at 34.7$^\circ$C. weighted distribution resulting $\tilde{\omega}'^{}_p$, denominator ratio...

10.1103/physreva.103.042208 article EN cc-by Physical review. A/Physical review, A 2021-04-07

We present details on a new measurement of the muon magnetic anomaly, $a_\mu = (g_\mu -2)/2$. The result is based positive data taken at Fermilab's Muon Campus during 2019 and 2020 accelerator runs. uses $3.1$ GeV$/c$ polarized muons stored in $7.1$-m-radius storage ring with $1.45$ T uniform field. value $ a_{\mu}$ determined from measured difference between spin precession frequency its cyclotron frequency. This normalized to strength field, using Nuclear Magnetic Resonance (NMR). ratio...

10.1103/physrevd.110.032009 article EN cc-by Physical review. D/Physical review. D. 2024-08-08

Hypernuclear lifetime and partial decay-rate measurements made at the Brookhaven National Laboratory Alternating Gradient Synchrotron are reported for $_{\mathrm{\ensuremath{\Lambda}}}^{5}\mathrm{He}$ $_{\mathrm{\ensuremath{\Lambda}}}^{12}\mathrm{C}$. The mesonic nonmesonic decays compared to existing weak-interaction calculations. In particular, reaction \ensuremath{\Lambda}N\ensuremath{\rightarrow}NN is discussed as an example of a nonleptonic weak process which calculations have been...

10.1103/physrevc.43.849 article EN Physical Review C 1991-02-01

We report a measurement of the positive muon lifetime to precision 1.0 ppm; it is most precise particle ever measured. The experiment used time-structured, low-energy beam and segmented plastic scintillator array record more than 2×1012 decays. Two different stopping target configurations were employed in independent data-taking periods. combined results give τμ+(MuLan)=2 196 980.3(2.2) ps, 15 times as any previous experiment. gives value for Fermi constant: GF(MuLan)=1.166 378 8(7)×10−5...

10.1103/physrevlett.106.041803 article EN publisher-specific-oa Physical Review Letters 2011-01-25

We present a detailed report of the method, setup, analysis and results precision measurement positive muon lifetime. The experiment was conducted at Paul Scherrer Institute using time-structured, nearly 100%-polarized, surface beam segmented, fast-timing, plastic scintillator array. employed two target arrangements; magnetized ferromagnetic with ~4 kG internal magnetic field crystal quartz in 130 G external field. Approximately 1.6 x 10^{12} positrons were accumulated together data yield...

10.1103/physrevd.87.052003 article EN publisher-specific-oa Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D, Particles, fields, gravitation, and cosmology 2013-03-04

10.1016/j.ppnp.2015.06.001 article EN publisher-specific-oa Progress in Particle and Nuclear Physics 2015-06-12
Susan R. Kahn Jim A. Julian Clive Kearon Chu‐Shu Gu David J. Cohen and 95 more Elizabeth A. Magnuson Anthony J. Comerota Samuel Z. Goldhaber Michael R. Jaff Mahmood K. Razavi Andrei Kindzelski Joseph R. Schneider Paul S. Kim Rabih A. Chaer Akhilesh K. Sista Robert B. McLafferty John A. Kaufman Brandt C. Wible Morey A. Blinder Suresh Vedantham Michael J. Sichlau Athanasios Vlahos Steven J. Smith Quinn Thalheimer Nisha Singh Rekha Harting John Gocke Scott Guth Neel Shah Paul S. Brady Marvin Schatz Mindy M. Horrow Peyman Markazi Leli Forouzan Terence A.S. Matalon D. W. Hertzog Swapna Goday Margaret Kennedy Robert M. Kaplan Thomas Campbell Jamie Hartman Elmer Nahum Arvind Venkat Venkataramu N. Krishnamurthy John Rectenwald Peter K. Henke Jonathan L. Eliason Jonathon Willatt Guillermo A. Escobar Shaun Samuels Barry T. Katzen James F. Benenati Alex Powell Constantino Peña Howard W. Wallach Ripal Gandhi Joseph R. Schneider Stanley E. Kim F Amouzegar Hashemi Joseph J. Boyle Nilesh Patel Michael J. Verta Daniel A. Leung M. Llopis García Phillip Blatt Jamil Khatri Dave Epstein Randall E. Ryan Tom Sweeny Michael Stillabower G. Kimbiris Tuhina Raman Paul Sierzenski Lelia Getto Michael Dignazio Paul Sierzenski Márk Horváth Heather L. Gornik John R. Bartholomew Mehdi H. Shishehbor Frank Peacock Douglas Joseph Soo Hyum Kim Natalia Fendrikova Mahlay Daniel G. Clair Sean P. Lyden Baljendra Kapoor Gordon McLennon Gregory Pierce James R. Newman James Andrew Spain Amanjiit Gill Aaron Hamilton Anthony Rizzo Woosup Park Alan M. Dietzek Ira Galin Dahlia Plummer Richard Hsu Patrick Broderick

10.1016/j.jvsv.2019.03.023 article EN publisher-specific-oa Journal of Vascular Surgery Venous and Lymphatic Disorders 2019-12-13

The rate of nuclear muon capture by the proton has been measured using a new technique based on time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas, which is key to avoiding uncertainties from muonic molecule formation. hyperfine singlet ground state μp atom was obtained difference between μ− disappearance and world average for μ+ decay rate, yielding ΛS=725.0±17.4 s−1, induced pseudoscalar coupling nucleon, gP(q2=−0.88m2μ)=7.3±1.1, extracted.Received 16 April...

10.1103/physrevlett.99.032002 article EN Physical Review Letters 2007-07-16

The MuCap experiment at the Paul Scherrer Institute has measured rate L_S of muon capture from singlet state muonic hydrogen atom to a precision 1%. A beam was stopped in time projection chamber filled with 10-bar, ultra-pure gas. Cylindrical wire chambers and segmented scintillator barrel detected electrons decay. is determined difference between mu- disappearance free decay rate. result based on analysis 1.2 10^10 decays, which we extract = (714.9 +- 5.4(stat) 5.1(syst)) s^-1 derive...

10.1103/physrevlett.110.012504 article EN publisher-specific-oa Physical Review Letters 2013-01-03

We present a new measurement of the positive muon magnetic anomaly, $a_\mu \equiv (g_\mu - 2)/2$, from Fermilab Muon $g\!-\!2$ Experiment using data collected in 2019 and 2020. have analyzed more than 4 times number positrons decay our previous result 2018 data. The systematic error is reduced by factor 2 due to better running conditions, stable beam, improved knowledge field weighted distribution, $\tilde{\omega}'^{}_p$, anomalous precession frequency corrected for beam dynamics effects,...

10.48550/arxiv.2308.06230 preprint EN cc-by arXiv (Cornell University) 2023-01-01

The muon anomalous magnetic moment has been measured in a new experiment at Brookhaven. Polarized muons were stored superferric ring, and the angular frequency difference, ${\ensuremath{\omega}}_{a}$, between spin precession orbital frequencies was determined by measuring time distribution of high-energy decay positrons. ratio $R$ ${\ensuremath{\omega}}_{a}$ to Larmor free protons, ${\ensuremath{\omega}}_{p}$, storage-ring field measured. We find...

10.1103/physrevlett.82.1632 article EN Physical Review Letters 1999-02-22

The spin precession frequency of muons stored in the $(g-2)$ storage ring has been analyzed for evidence Lorentz and CPT violation. Two violation signatures were searched for: a nonzero $\Delta\omega_{a}$ (=$\omega_{a}^{\mu^{+}}-\omega_{a}^{\mu^{-}}$); sidereal variation $\omega_{a}^{\mu^{\pm}}$. No significant effect is found, following limits on standard-model extension parameters are obtained: $b_{Z} =-(1.0 \pm 1.1)\times 10^{-23}$ GeV; $(m_{\mu}d_{Z0}+H_{XY}) = (1.8 6.0 \times 10^{-23})$...

10.1103/physrevlett.100.091602 article EN Physical Review Letters 2008-03-04
Coming Soon ...