D. W. Hertzog
- Particle physics theoretical and experimental studies
- Quantum Chromodynamics and Particle Interactions
- High-Energy Particle Collisions Research
- Muon and positron interactions and applications
- Particle Detector Development and Performance
- Superconducting Materials and Applications
- Neutrino Physics Research
- Dark Matter and Cosmic Phenomena
- Radiation Detection and Scintillator Technologies
- Atomic and Subatomic Physics Research
- Computational Physics and Python Applications
- Atomic and Molecular Physics
- Particle accelerators and beam dynamics
- Particle Accelerators and Free-Electron Lasers
- Nuclear physics research studies
- X-ray Spectroscopy and Fluorescence Analysis
- Advanced NMR Techniques and Applications
- Nuclear Physics and Applications
- Astrophysics and Cosmic Phenomena
- Radioactive Decay and Measurement Techniques
- Scientific Research and Discoveries
- Quantum and Classical Electrodynamics
- Distributed and Parallel Computing Systems
- Advanced Chemical Physics Studies
- Noncommutative and Quantum Gravity Theories
California University of Pennsylvania
2024
University of Washington
2011-2023
University of Missouri–Kansas City
2019
Saint Luke's Health System
2019
Seattle University
2015-2018
University of Illinois Urbana-Champaign
2002-2015
University of Illinois System
1989-2013
Forschungszentrum Jülich
1997-2000
Uppsala University
1991-2000
Carnegie Mellon University
1985-2000
We present the final report from a series of precision measurements muon anomalous magnetic moment, ${a}_{\ensuremath{\mu}}=(g\ensuremath{-}2)/2$. The details experimental method, apparatus, data taking, and analysis are summarized. Data obtained at Brookhaven National Laboratory, using nearly equal samples positive negative muons, were used to deduce ${a}_{\ensuremath{\mu}}(\mathrm{\text{Expt}})=11659208.0(5.4)(3.3)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}10}$, where...
We review the present status of Standard Model calculation anomalous magnetic moment muon. This is performed in a perturbative expansion fine-structure constant $\alpha$ and broken down into pure QED, electroweak, hadronic contributions. The QED contribution by far largest has been evaluated up to including $\mathcal{O}(\alpha^5)$ with negligible numerical uncertainty. electroweak suppressed $(m_\mu/M_W)^2$ only shows at level seventh significant digit. It two loops known better than one...
The anomalous magnetic moment of the negative muon has been measured to a precision 0.7 ppm (ppm) at Brookhaven Alternating Gradient Synchrotron. This result is based on data collected in 2001, and over an order magnitude more precise than previous measurement for muon. a(mu(-))=11 659 214(8)(3) x 10(-10) (0.7 ppm), where first uncertainty statistical second systematic, consistent with measurements anomaly positive average a(mu)(exp)=11 208(6) (0.5 ppm).
A precise measurement of the anomalous g value, a(mu) = (g-2)/2, for positive muon has been made at Brookhaven Alternating Gradient Synchrotron. The result a(mu+) 11 659 202(14) (6) x 10(-10) (1.3 ppm) is in good agreement with previous measurements and an error one third that combined data. current theoretical value from standard model a(mu)(SM) 159.6(6.7) (0.57 a(mu)(exp) - 43(16) which world average experimental value.
Three independent searches for an electric dipole moment (EDM) of the positive and negative muons have been performed, using spin precession data from muon g-2 storage ring at Brookhaven National Laboratory. Details on experimental apparatus three analyses are presented. Since individual results muon, as well combined result, d=-0.1(0.9)E-19 e-cm, all consistent with zero, we set a new EDM limit, |d| < 1.9E-19 e-cm (95% C.L.). This represents factor 5 improvement over previous best limit EDM.
We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. have analyzed more than 4 times number positrons decay our previous result 2018 data. The systematic error is reduced by factor 2 due to better running conditions, stable beam, improved knowledge field weighted distribution, ω[over ˜]_{p}^{'}, anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From ratio...
The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $ω_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run 2018. When combined a precision measurement magnetic field experiment's ring, determines anomaly $a_μ({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm). This article describes...
A higher precision measurement of the anomalous g value, a(mu)=(g-2)/2, for positive muon has been made at Brookhaven Alternating Gradient Synchrotron, based on data collected in year 2000. The result a(mu(+))=11 659 204(7)(5)x10(-10) (0.7 ppm) is good agreement with previous measurements and an error about one-half that combined data. present world average experimental value a(mu)(expt)=11 203(8)x10(-10) ppm).
The Fermi National Accelerator Laboratory has measured the anomalous precession frequency $a^{}_\mu = (g^{}_\mu-2)/2$ of muon to a combined precision 0.46 parts per million with data collected during its first physics run in 2018. This paper documents measurement magnetic field storage ring. is monitored by nuclear resonance systems and calibrated terms equivalent proton spin spherical water sample at 34.7$^\circ$C. weighted distribution resulting $\tilde{\omega}'^{}_p$, denominator ratio...
We present details on a new measurement of the muon magnetic anomaly, $a_\mu = (g_\mu -2)/2$. The result is based positive data taken at Fermilab's Muon Campus during 2019 and 2020 accelerator runs. uses $3.1$ GeV$/c$ polarized muons stored in $7.1$-m-radius storage ring with $1.45$ T uniform field. value $ a_{\mu}$ determined from measured difference between spin precession frequency its cyclotron frequency. This normalized to strength field, using Nuclear Magnetic Resonance (NMR). ratio...
Received 22 August 2002DOI:https://doi.org/10.1103/PhysRevLett.89.129903©2002 American Physical Society
Hypernuclear lifetime and partial decay-rate measurements made at the Brookhaven National Laboratory Alternating Gradient Synchrotron are reported for $_{\mathrm{\ensuremath{\Lambda}}}^{5}\mathrm{He}$ $_{\mathrm{\ensuremath{\Lambda}}}^{12}\mathrm{C}$. The mesonic nonmesonic decays compared to existing weak-interaction calculations. In particular, reaction \ensuremath{\Lambda}N\ensuremath{\rightarrow}NN is discussed as an example of a nonleptonic weak process which calculations have been...
We report a measurement of the positive muon lifetime to precision 1.0 ppm; it is most precise particle ever measured. The experiment used time-structured, low-energy beam and segmented plastic scintillator array record more than 2×1012 decays. Two different stopping target configurations were employed in independent data-taking periods. combined results give τμ+(MuLan)=2 196 980.3(2.2) ps, 15 times as any previous experiment. gives value for Fermi constant: GF(MuLan)=1.166 378 8(7)×10−5...
We present a detailed report of the method, setup, analysis and results precision measurement positive muon lifetime. The experiment was conducted at Paul Scherrer Institute using time-structured, nearly 100%-polarized, surface beam segmented, fast-timing, plastic scintillator array. employed two target arrangements; magnetized ferromagnetic with ~4 kG internal magnetic field crystal quartz in 130 G external field. Approximately 1.6 x 10^{12} positrons were accumulated together data yield...
The rate of nuclear muon capture by the proton has been measured using a new technique based on time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas, which is key to avoiding uncertainties from muonic molecule formation. hyperfine singlet ground state μp atom was obtained difference between μ− disappearance and world average for μ+ decay rate, yielding ΛS=725.0±17.4 s−1, induced pseudoscalar coupling nucleon, gP(q2=−0.88m2μ)=7.3±1.1, extracted.Received 16 April...
The MuCap experiment at the Paul Scherrer Institute has measured rate L_S of muon capture from singlet state muonic hydrogen atom to a precision 1%. A beam was stopped in time projection chamber filled with 10-bar, ultra-pure gas. Cylindrical wire chambers and segmented scintillator barrel detected electrons decay. is determined difference between mu- disappearance free decay rate. result based on analysis 1.2 10^10 decays, which we extract = (714.9 +- 5.4(stat) 5.1(syst)) s^-1 derive...
We present a new measurement of the positive muon magnetic anomaly, $a_\mu \equiv (g_\mu - 2)/2$, from Fermilab Muon $g\!-\!2$ Experiment using data collected in 2019 and 2020. have analyzed more than 4 times number positrons decay our previous result 2018 data. The systematic error is reduced by factor 2 due to better running conditions, stable beam, improved knowledge field weighted distribution, $\tilde{\omega}'^{}_p$, anomalous precession frequency corrected for beam dynamics effects,...
The muon anomalous magnetic moment has been measured in a new experiment at Brookhaven. Polarized muons were stored superferric ring, and the angular frequency difference, ${\ensuremath{\omega}}_{a}$, between spin precession orbital frequencies was determined by measuring time distribution of high-energy decay positrons. ratio $R$ ${\ensuremath{\omega}}_{a}$ to Larmor free protons, ${\ensuremath{\omega}}_{p}$, storage-ring field measured. We find...
The spin precession frequency of muons stored in the $(g-2)$ storage ring has been analyzed for evidence Lorentz and CPT violation. Two violation signatures were searched for: a nonzero $\Delta\omega_{a}$ (=$\omega_{a}^{\mu^{+}}-\omega_{a}^{\mu^{-}}$); sidereal variation $\omega_{a}^{\mu^{\pm}}$. No significant effect is found, following limits on standard-model extension parameters are obtained: $b_{Z} =-(1.0 \pm 1.1)\times 10^{-23}$ GeV; $(m_{\mu}d_{Z0}+H_{XY}) = (1.8 6.0 \times 10^{-23})$...