Senli Liu

ORCID: 0000-0001-6859-1271
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Nonlinear Partial Differential Equations
  • Advanced Mathematical Physics Problems
  • Advanced Mathematical Modeling in Engineering
  • Nonlinear Differential Equations Analysis
  • Nonlinear Waves and Solitons
  • Geometric Analysis and Curvature Flows
  • Differential Equations and Boundary Problems
  • Numerical methods in inverse problems
  • Contact Mechanics and Variational Inequalities
  • Black Holes and Theoretical Physics
  • Numerical methods in engineering
  • Spectral Theory in Mathematical Physics

Hunan University of Science and Technology
2024

Huaihua University
2024

Anhui University of Science and Technology
2024

Central South University
2020-2023

Abstract We study the following fractional Choquard equation <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="block"> <m:msup> <m:mrow> <m:mo>(</m:mo> <m:mo>−</m:mo> <m:mi>Δ</m:mi> </m:mrow> <m:mo>)</m:mo> <m:mi>s</m:mi> </m:msup> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mfrac> <m:mo>∣</m:mo> <m:mi>x</m:mi> <m:mi>θ</m:mi> </m:mfrac> <m:mo>=</m:mo> <m:mo stretchy="false">(</m:mo> <m:msub> <m:mi>I</m:mi> <m:mi>α</m:mi> </m:msub> <m:mo>*</m:mo> <m:mi>F</m:mi> stretchy="false">)</m:mo>...

10.1515/anona-2024-0001 article EN cc-by Advances in Nonlinear Analysis 2024-01-01

&lt;abstract&gt;&lt;p&gt;In this paper, we consider a class of critical Schrödinger-Bopp-Podolsky system. By virtue the Nehari manifold and variational methods, study existence, nonexistence asymptotic behavior ground state solutions for problem.&lt;/p&gt;&lt;/abstract&gt;

10.3934/era.2022108 article EN cc-by Electronic Research Archive 2022-01-01

10.1016/j.jmaa.2021.125799 article EN Journal of Mathematical Analysis and Applications 2021-11-11

Abstract We are concerned with the following Choquard equation: where , is p ‐Laplacian, Riesz potential, and F primitive of f which critical growth due to Hardy–Littlewood–Sobolev inequality. Under different range θ almost necessary conditions on nonlinearity in spirit Berestycki–Lions‐type conditions, we divide this paper into three parts. By applying refined Sobolev inequality Morrey norm generalized version Lions‐type theorem, some existence results established. It worth noting that our...

10.1002/mana.202100255 article EN Mathematische Nachrichten 2023-03-16

In this article we consider the fractional Schrodinger-Poisson system $$\displaylines{ (-\Delta)^{s} u - \mu \frac{\Phi(x/|x|)}{|x|^{2s}} +\lambda \phi = |u|^{2^*_s-2}u,\quad \text{in } \mathbb{R}^3,\cr (-\Delta)^t u^2, \quad \mathbb{R}^3, }$$ where \(s\in(0,3/4)\), \(t\in(0,1)\), \(2t+4s=3\), \(\lambda&gt;0\) and \(2^*_s=6/(3-2s)\) is Sobolev critical exponent. By using perturbation method, establish existence of a solution for \(\lambda\) small enough. For more information see...

10.58997/ejde.2020.01 article EN cc-by Electronic Journal of Differential Equations 2020-01-06

Abstract We consider the following Schrödinger–Bopp–Podolsky problem: $$ \textstyle\begin{cases} -\Delta u+V(x) u+\phi u=\lambda f(u)+ \vert u ^{4}u,&amp; \text{in } \mathbb{R}^{3}, \\ \phi +\Delta ^{2}\phi = u^{2}, &amp; \mathbb{R}^{3}. \end{cases} <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mo>−</mml:mo> <mml:mi>Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>V</mml:mi> <mml:mo>(</mml:mo>...

10.1186/s13661-020-01442-0 article EN cc-by Boundary Value Problems 2020-08-28

In this paper, we consider the following problem: −Δpu−ζ|u|p−2u|x|p=∑i=1kIαi∗|u|pαi∗|u|pαi∗−2u+|u|p∗−2u,in RN, where N=3,4,5, p∈(1,2], ζ∈0,Λ, Λ=N−ppp, Δp:=div(|∇u|p−2∇u) is p-Laplacian operator, p∗=NpN−p critical Sobolev exponent, pαi∗=p2N+αiN−p are Hardy–Littlewood–Sobolev upper exponents, parameters αi satisfy some assumptions. First, establish refined inequality with Coulomb norm, and show corresponding best constant achieved in RN by a nonnegative function. Second, using Morrey norm...

10.1080/17476933.2020.1720005 article EN Complex Variables and Elliptic Equations 2020-02-07

10.1007/s11784-022-01032-w article EN Journal of Fixed Point Theory and Applications 2022-12-15

In this paper, we study a class of critical fractional Kirchhoff-type equations with singular potential. With range parameters, propose several existence results. Our work extends the results Li and Su [Z. Angew. Math. Phys. 66, 3147 (2015)].

10.1063/5.0061144 article EN Journal of Mathematical Physics 2021-11-01

In this paper, we deal with the following Kirchhoff-type equation: \begin{equation*} -\bigg(1 +\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx\bigg) \Delta u +\frac{A}{|x|^{\alpha}}u =f(u),\quad x\in\mathbb{R}^{3}, \end{equation*} where $A&gt; 0$ is a real parameter and $\alpha\in(0,1)\cup ({4}/{3},2)$. Remark that $f(u)=|u|^{2_{\alpha}^{*}-2}u +\lambda|u|^{q-2}u +|u|^{4}u$, $\lambda&gt; 0$, $q\in(2_{\alpha}^{*},6)$, $2_{\alpha}^{*}=2+{4\alpha}/({4-\alpha})$ embedding bottom index, $6$ top index...

10.12775/tmna.2022.051 article EN Topological Methods in Nonlinear Analysis 2023-06-23

This paper is concerned with a nonlocal critical Neumann problem in the half space. By virtue of variational methods, global compactness theorem and Brouwer theory degree, we obtain existence multiplicity positive solutions.

10.57262/die037-0910-671 article EN Differential and Integral Equations 2024-04-02

The aim of this paper is to study the existence and multiplicity nonnegative solutions for following critical Kirchhoff equation involving fractional p ‐Laplace operator . More precisely, we consider where an open bounded domain with Lipschitz boundary m &gt; 1, a 0, b dimension Sobolev exponent, parameters λ 0 &lt; s 1 q ∞ Applying Nehari manifold, fibering maps Krasnoselskii genus theory, investigate solutions.

10.1002/mma.8189 article EN Mathematical Methods in the Applied Sciences 2022-03-08

We consider the following parametric double-phase problem: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mfenced open="{" close=""><mml:mrow><mml:mtable class="cases"><mml:mtr><mml:mtd columnalign="left"><mml:mo>−</mml:mo><mml:mi mathvariant="normal">div</mml:mi><mml:mfenced open="(" close=")"><mml:mrow><mml:msup><mml:mrow><mml:mfenced open="|"...

10.1155/2020/3805803 article EN cc-by Journal of Function Spaces 2020-06-04

10.1007/s13398-020-00893-5 article EN Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas 2020-06-30

In this paper, we consider the following Choquard equation: −Δu+u=(Iα∗F(u))F′(u)in RN where N⩾3, α∈(0,N), Iα is Riesz potential, and F(u):=1p|u|p+1q|u|q, p=N+αN q=N+αN−2 are lower upper critical exponents in sense of Hardy–Littlewood–Sobolev inequality. Based on perturbation method invariant sets descending flow, prove that above equation possesses infinitely many sign-changing solutions. Our results extend Seok [Nonlinear equations: doubly case. Appl Math Lett. 2018;76:148–156] Su [New...

10.1080/17476933.2020.1825394 article EN Complex Variables and Elliptic Equations 2020-10-02

Abstract In this paper, we study the Lieb's translation lemma in Coulomb–Sobolev space and then apply it to investigate existence of Pohožaev type ground state solution for elliptic equation with van der Waals potential.

10.1017/s0013091522000451 article EN Proceedings of the Edinburgh Mathematical Society 2022-10-18

We consider the following double phase problem with variable exponents: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mfenced open="{" close=""><mml:mrow><mml:mtable class="cases"><mml:mtr><mml:mtd columnalign="left"><mml:mo>−</mml:mo><mml:mi mathvariant="normal">div</mml:mi><mml:mfenced open="(" close=")"><mml:mrow><mml:msup><mml:mrow><mml:mfenced open="|"...

10.1155/2020/8237492 article EN cc-by Advances in Mathematical Physics 2020-03-23

Abstract In this paper, we focus on a Kirchhoff-type equation with singular potential and critical exponent. By virtue of the generalized version Lions-type theorem Nehari–Pohožaev manifold, established existence Nehari–Pohožaev-type ground state solutions to mentioned equation. Some recent results from literature are generally improved extended.

10.4153/s0008439521000436 article EN Canadian Mathematical Bulletin 2021-06-21

In this paper, we deal with the existence and multiplicity of radial sign-changing solutions for fractional Schrödinger–Poisson system: (℘) (−Δ)su+u+ϕu=f(u),(−Δ)αϕ=u2,in R3(℘) where s∈(34,1), α∈(0,1) f is a continuous function. Based on perturbation approach method invariant sets descending flow, obtain system (P). addition, by applying constrained variational incorporated Brouwer degree theory, prove that (P) possesses at least one ground state solution. Furthermore, show energy exceed...

10.1080/00036811.2021.1991916 article EN Applicable Analysis 2021-10-18
Coming Soon ...