Li Wang

ORCID: 0000-0002-8370-9327
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Nonlinear Partial Differential Equations
  • Advanced Mathematical Modeling in Engineering
  • Nonlinear Differential Equations Analysis
  • Advanced Mathematical Physics Problems
  • Numerical methods in inverse problems
  • Spectral Theory in Mathematical Physics
  • Stability and Controllability of Differential Equations
  • Mathematical Dynamics and Fractals
  • Differential Equations and Numerical Methods
  • Advanced Algebra and Geometry
  • Advanced Combinatorial Mathematics
  • Geometric Analysis and Curvature Flows
  • Finite Group Theory Research
  • Nonlinear Photonic Systems
  • Quantum Information and Cryptography
  • Chaos-based Image/Signal Encryption
  • Neural and Behavioral Psychology Studies
  • Composite Material Mechanics
  • Differential Equations and Boundary Problems
  • Statistical and numerical algorithms
  • Advanced Topics in Algebra
  • Deception detection and forensic psychology
  • Image and Signal Denoising Methods
  • Corporate Social Responsibility Reporting
  • Advanced Thermodynamics and Statistical Mechanics

East China Jiaotong University
2013-2024

Nanchang University
2023

Jingdezhen Ceramic Institute
2022

Kunming University of Science and Technology
2020

Nanjing Normal University
2015

Taiyuan University of Technology
2015

Shanghai Normal University
2009-2011

Beijing University of Technology
1987

Beijing Polytechnic
1987

University at Buffalo, State University of New York
1987

10.1016/j.jmaa.2017.09.008 article EN Journal of Mathematical Analysis and Applications 2017-09-08

10.1016/j.jmaa.2018.06.071 article EN Journal of Mathematical Analysis and Applications 2018-06-28

In this paper, we show the existence of infinitely many solutions for Kirchhoff-type variable-order fractional Laplacian problems involving variable exponents. More precisely, consider M([u]s(⋅)...

10.1080/00036811.2019.1688790 article EN Applicable Analysis 2019-11-12

10.1016/j.cam.2015.04.011 article EN publisher-specific-oa Journal of Computational and Applied Mathematics 2015-04-27

In this paper, we study the existence of multi-bump solutions for following Schrödinger–Bopp–Podolsky system with steep potential well: <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="block"> <a:mrow> <a:mo>{</a:mo> <a:mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <a:mtr> <a:mtd> <a:mo>−</a:mo> <a:mi mathvariant="normal">Δ</a:mi> <a:mi>u</a:mi> <a:mo>+</a:mo> <a:mo stretchy="false">(</a:mo> <a:mi>λ</a:mi> <a:mi>V</a:mi>...

10.14232/ejqtde.2024.1.10 article EN cc-by Electronic journal of qualitative theory of differential equations 2024-01-01

&lt;abstract&gt;&lt;p&gt;In the present paper, we study following Kirchhoff-Schrödinger-Poisson system with logarithmic and critical nonlinearity:&lt;/p&gt; &lt;p&gt;&lt;disp-formula&gt; &lt;label/&gt; &lt;tex-math id="FE1"&gt; \begin{document}$ \begin{align} \begin{array}{ll} \left \{ - \Bigr(a+b\int_\Omega|\nabla u|^2{\mathrm{d}}x \Bigr)\Delta u+V(x)u-\frac{1}{2}u\Delta (u^2)+\phi u = \lambda |u|^{q-2}u\ln|u|^2+|u|^4u, &amp;amp;x\in \Omega, \\ -\Delta \phi u^2,&amp;amp; x\in 0,&amp;amp;...

10.3934/math.2023431 article EN cc-by AIMS Mathematics 2023-01-01

In this paper, we study the Kirchhoff type equation −a+b∫R3|∇u|2dxΔu+V(x)u=f(x,u),x∈R3,u∈H1(R3), where a, b>0 are constants and V(x) is a given positive potential. The nonlinearity covers pure power f(x,u)=Q(x)|u|p−2u with 2<p<4, case in which few existence results of sign-changing solutions known. By using method invariant sets descending flow, obtain solution for problem. Furthermore, if f odd respect to u, prove that problem admits infinitely many solutions.

10.1080/17476933.2019.1636790 article EN Complex Variables and Elliptic Equations 2019-07-31

10.1016/0097-3165(87)90075-6 article EN publisher-specific-oa Journal of Combinatorial Theory Series A 1987-09-01

In the present paper, we deal with following fractional Kirchhoff–Schrödinger–Poisson system logarithmic and critical nonlinearity: (a+b[u]s2)(−Δ)su+V(x)u+ϕu=λ|u|q−2uln⁡|u|2+|u|2s∗−2u,x∈Ω,(−Δ)tϕ=u2,x∈Ω,u=0,x∈R3∖Ω, where s∈34,1,t∈(0,1),λ,a,b>0,4<q<2s∗, [u]s2=∫R3∫R3|u(x)−u(y)|2|x−y|3+2sdxdy, Ω is a bounded domain in R3 Lipschitz boundary. Combining constraint variational methods, topological degree theory quantitative deformation arguments, prove that above problem has least energy...

10.1080/17476933.2021.1975116 article EN Complex Variables and Elliptic Equations 2021-09-19

Abstract We describe the group of all reflection-preserving automorphisms an imprimitive complex reflection group. also study some properties this automorphism

10.1017/s1446788708000748 article EN Journal of the Australian Mathematical Society 2009-02-01

In this paper, we consider the following Schrödinger‐Poisson system: urn:x-wiley:mma:media:mma5694:mma5694-math-0001 where parameters α , β ∈(0,3), λ &gt;0, and are Hardy‐Littlewood‐Sobolev critical exponents. For &lt; prove existence of nonnegative groundstate solution to above system. Moreover, applying Moser iteration scheme Kelvin transformation, show behavior at infinity. &gt;0 small, apply a perturbation method study solution. is particular value, infinitely many solutions

10.1002/mma.5694 article EN Mathematical Methods in the Applied Sciences 2019-06-23

10.1016/0196-8858(87)90014-5 article FR publisher-specific-oa Advances in Applied Mathematics 1987-06-01

{We study the existence and asymptotic behavior of positive solutions for following fractional magnetic Kirchhoff equation with steep potential well \begin{align*} \renewcommand{\arraystretch}{1.25} \begin{array}{ll} \ds \left \{ \left(a+b\int_{\R^{3}}|(-\Delta)_A^\frac{s}{2}u|^2\, dx\right)(-\Delta)_A^s u+V_{\lambda}u=|u|^{p-2}u~~~in~\mathbb{R}^3, \\ u\in H^s(\R^3), \end{array} \right . \end{align*} where $a,~b&gt;0$ are constants, $2

10.22541/au.170665186.64558549/v1 preprint EN Authorea (Authorea) 2024-01-30

\begin{abstract} {In this paper we consider the following fractional Kirchhoff equation with steep potential well \begin{align*} \renewcommand{\arraystretch}{1.25} \begin{array}{ll} \ds \left \{ \left(a+b\int_{\R^{3}}|(-\Delta)^\frac{s}{2}u|^2\, dx\right)(-\Delta)^s u+\lambda V(x)u=|u|^{p-2}u,\,\,x\in\mathbb{R}^3, \\ u\in H^s(\R^3), \end{array} \right . \end{align*} where $a&gt;0$ is a constant, $b$ and $\lambda$ are positive parameters. $2

10.22541/au.170664502.27023074/v1 preprint EN Authorea (Authorea) 2024-01-30
Coming Soon ...