J. S. Areeda
- Pulsars and Gravitational Waves Research
- Gamma-ray bursts and supernovae
- Geophysics and Gravity Measurements
- Astrophysical Phenomena and Observations
- Cosmology and Gravitation Theories
- Cardiac Imaging and Diagnostics
- Astrophysics and Cosmic Phenomena
- Medical Imaging Techniques and Applications
- Geophysics and Sensor Technology
- High-pressure geophysics and materials
- Advanced X-ray and CT Imaging
- Seismic Waves and Analysis
- Statistical and numerical algorithms
- Radio Astronomy Observations and Technology
- Advanced Frequency and Time Standards
- Advanced MRI Techniques and Applications
- Atomic and Subatomic Physics Research
- Radiomics and Machine Learning in Medical Imaging
- Seismology and Earthquake Studies
- Magnetic confinement fusion research
- Astronomical Observations and Instrumentation
- Black Holes and Theoretical Physics
- Superconducting Materials and Applications
- Cold Atom Physics and Bose-Einstein Condensates
- earthquake and tectonic studies
California State University, Fullerton
2015-2024
Cedars-Sinai Medical Center
1982-2001
University of California, Los Angeles
1990-2001
St. Luke's Hospital
1990
Emory University
1990
Georgia Institute of Technology
1990
On September 14, 2015 at 09:50:45 UTC the two detectors of Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with peak strain 1.0×10(-21). It matches waveform predicted by general relativity for inspiral and merger pair black holes ringdown resulting single hole. was matched-filter signal-to-noise ratio 24 false alarm rate estimated be less than 1 event per 203,000 years,...
On 2017 August 17, the gravitational-wave event GW170817 was observed by Advanced LIGO and Virgo detectors, gamma-ray burst (GRB) GRB 170817A independently Fermi Gamma-ray Burst Monitor, Anticoincidence Shield for Spectrometer International Gamma-Ray Astrophysics Laboratory. The probability of near-simultaneous temporal spatial observation occurring chance is $5.0\times 10^{-8}$. We therefore confirm binary neutron star mergers as a progenitor short GRBs. association provides new insight...
The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two observatories in Hanford, WA Livingston, LA. identical design, specialized versions of a Michelson interferometer with 4 km long arms. As initial LIGO, Fabry-Perot cavities used arms to increase interaction time wave, power recycling is effective laser power. Signal has been added improve frequency response. In most sensitive region around 100 Hz, design strain sensitivity factor...
On 17 August 2017, the LIGO and Virgo observatories made first direct detection of gravitational waves from coalescence a neutron star binary system. The this gravitational-wave signal, GW170817, offers novel opportunity to directly probe properties matter at extreme conditions found in interior these stars. initial, minimal-assumption analysis data placed constraints on tidal effects coalescing bodies, which were then translated radii. Here, we expand upon previous analyses by working under...
The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion a compact-object binary in large-velocity, highly nonlinear regime, and witness final merger excitation uniquely relativistic modes gravitational field. We carry out several investigations determine whether is consistent with black-hole general relativity. find that remnant's mass spin, as determined from low-frequency (inspiral) high-frequency (postinspiral) phases signal, are mutually solution...
In 2009-2010, the Laser Interferometer Gravitational-wave Observa- tory (LIGO) operated together with international partners Virgo and GEO600 as a network to search for gravitational waves of astrophysical origin. The sensitiv- ity these detectors was limited by combination noise sources inherent instrumental design its environment, often localized in time or frequency, that couple into gravitational-wave readout. Here we review performance LIGO instruments during this epoch, work done...
On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by Advanced LIGO detectors with network signal-to-noise ratio 13. This system is lightest hole binary so far observed, component masses $12^{+7}_{-2}\,M_\odot$ and $7^{+2}_{-2}\,M_\odot$ (90% credible intervals). These lie in range measured low-mass X-ray binaries, thus allowing us to compare detected through gravitational waves electromagnetic observations. The...
On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Virgo observed a short duration gravitational-wave signal, GW190521, with three-detector network signal-to-noise ratio of 14.7, an estimated false-alarm rate 1 in 4900 yr using search sensitive to generic transients. If GW190521 is from quasicircular binary inspiral, then the detected signal consistent merger two black holes masses 85_{-14}^{+21} M_{⊙} 66_{-18}^{+17} (90% credible intervals). We infer that primary hole mass lies within gap...
The second-generation of gravitational-wave detectors are just starting operation, and have already yielding their first detections. Research is now concentrated on how to maximize the scientific potential astronomy. To support this effort, we present here design targets for a new generation detectors, which will be capable observing compact binary sources with high signal-to-noise ratio throughout Universe.
The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Virgo up to the end of their observing run. Updating previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during second half run (O3b) between 1 November 2019, 15:00 UTC 27 March 2020, 17:00 UTC. There are 35 coalescence candidates identified by at least one our search algorithms a probability astrophysical origin $p_\mathrm{astro} > 0.5$. Of...
On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize properties of source and its parameters. The data around time event were analyzed coherently across LIGO network using suite accurate waveform models that describe gravitational waves from compact binary system in general relativity. GW150914 was produced by nearly equal mass black hole masses 36_{-4}^{+5}M_{⊙} 29_{-4}^{+4}M_{⊙}; for each...
The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw detections gravitational waves binary black hole mergers. In this paper we present full results a search for merger signals with total masses up $100 M_\odot$ and detailed implications our observations these systems. Our search, based on general-relativistic models wave systems, unambiguously identified two signals, GW150914 GW151226, significance greater than $5\sigma$ over observing...
We present results on the mass, spin, and redshift distributions with phenomenological population models using ten binary black hole mergers detected in first second observing runs completed by Advanced LIGO Virgo. constrain properties of (BBH) mass spectrum a range parameterizations BBH spin distributions. find that distribution more massive such binaries is well approximated no than 1% holes $45\,M_\odot$, power law index $\alpha = {1.3}^{+1.4}_{-1.7}$ (90% credibility). also show BBHs are...
The discovery of the gravitational-wave source GW150914 with Advanced LIGO detectors provides first observational evidence for existence binary black-hole systems that inspiral and merge within age Universe. Such mergers have been predicted in two main types formation models, involving isolated binaries galactic fields or dynamical interactions young old dense stellar environments. measured masses robustly demonstrate relatively "heavy" black holes ($\gtrsim 25\, M_\odot$) can form nature....
We report on the population of 47 compact binary mergers detected with a false-alarm rate 1/yr in second LIGO--Virgo Gravitational-Wave Transient Catalog, GWTC-2. observe several characteristics merging black hole (BBH) not discernible until now. First, we find that primary mass spectrum contains structure beyond power-law sharp high-mass cut-off; it is more consistent broken power law break at $39.7^{+20.3}_{-9.1}\,M_\odot$, or Gaussian feature peaking $33.1^{+4.0}_{-5.6}\,M_\odot$ (90\%...
The detection of gravitational waves by Advanced LIGO and Virgo provides an opportunity to test general relativity in a regime that is inaccessible traditional astronomical observations laboratory tests. We present four tests the consistency data with binary black hole waveforms predicted relativity. One subtracts best-fit waveform from checks residual detector noise. second low- high-frequency parts observed signals. third phenomenological deviations introduced model (including...
We report the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent neutron star-black hole (NSBH) binaries. The events are named GW200105_162426 GW200115_042309, abbreviated as GW200105 GW200115; first was observed by LIGO Livingston Virgo, second all three LIGO-Virgo detectors. source has component masses $8.9^{+1.2}_{-1.5}\,M_\odot$ $1.9^{+0.3}_{-0.2}\,M_\odot$, whereas GW200115...
Following a major upgrade, the two advanced detectors of Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With strain sensitivity 10^{-23}/sqrt[Hz] at 100 Hz, product observable volume measurement time exceeded that all previous runs within 16 days coincident observation. On 14, 2015, Advanced LIGO observed transient gravitational-wave signal determined to be coalescence black holes [B. P. Abbott et al.,...
We report on the population properties of compact binary mergers inferred from gravitational-wave observations these systems during first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with classes mergers: black hole, neutron star, and star–black hole mergers. infer star merger rate to be between 10 <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:mn>1700</a:mn><a:mtext> </a:mtext><a:mtext>...
On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo was also taking data that did not contribute to detection due low ratio, but were used for subsequent parameter estimation. 90% credible intervals component masses range from 1.12 2.52 $M_{\odot}$ (1.45 1.88 if we restrict dimensionless spin magnitudes be smaller than 0.05). These mass parameters are consistent individual components being neutron stars. However,...
We report on gravitational wave discoveries from compact binary coalescences detected by Advanced LIGO and Virgo in the first half of third observing run (O3a) between 1 April 2019 15:00 UTC October 15:00. By imposing a false-alarm-rate threshold two per year each four search pipelines that constitute our search, we present 39 candidate events. At this threshold, expect contamination fraction less than 10%. Of these, 26 events were reported previously near real-time through GCN Notices...
Abstract We report the observation of a compact binary coalescence involving 22.2–24.3 M ⊙ black hole and object with mass 2.50–2.67 (all measurements quoted at 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO’s Virgo’s third observing run on 2019 August 14 21:10:39 UTC has signal-to-noise ratio 25 in three-detector network. source localized to 18.5 deg 2 distance Mpc; no electromagnetic counterpart been confirmed date. most unequal yet measured...
The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in direct measurement with Advanced LIGO H1 and L1 detectors. This achievement is culmination decades research to implement gravitational-wave During ongoing O3 observation run, are improving sensitivity interferometers signals above 50 Hz by up 3 dB, thereby increasing expected detection...