Stefan G. Stark

ORCID: 0000-0003-2478-9512
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Cancer Genomics and Diagnostics
  • PI3K/AKT/mTOR signaling in cancer
  • Bioinformatics and Genomic Networks
  • Single-cell and spatial transcriptomics
  • RNA modifications and cancer
  • RNA Research and Splicing
  • Protein Kinase Regulation and GTPase Signaling
  • Gene expression and cancer classification
  • Genomics and Phylogenetic Studies
  • Cancer-related molecular mechanisms research
  • Biochemical and Molecular Research
  • Genomics and Chromatin Dynamics
  • Evolution and Genetic Dynamics
  • Genetic factors in colorectal cancer
  • Chromosomal and Genetic Variations
  • Epigenetics and DNA Methylation
  • Cell Image Analysis Techniques
  • Nutrition, Genetics, and Disease
  • Bayesian Methods and Mixture Models
  • Genomics and Rare Diseases
  • Pancreatic and Hepatic Oncology Research
  • Complex Network Analysis Techniques
  • Biomedical Text Mining and Ontologies
  • Telomeres, Telomerase, and Senescence
  • DNA Repair Mechanisms

ETH Zurich
2017-2024

SIB Swiss Institute of Bioinformatics
2017-2024

Memorial Sloan Kettering Cancer Center
2015-2023

University Hospital of Zurich
2017-2023

University of Zurich
2021-2022

Alexandru Ioan Cuza University
2022

Korea University
2020

Life Science Zurich
2020

German Cancer Research Center
2013

Heidelberg University
2013

Our comprehensive analysis of alternative splicing across 32 The Cancer Genome Atlas cancer types from 8,705 patients detects events and tumor variants by reanalyzing RNA whole-exome sequencing data. Tumors have up to 30% more than normal samples. Association somatic with confirmed known trans associations in SF3B1 U2AF1 identified additional trans-acting (e.g., TADA1, PPP2R1A). Many tumors thousands not detectable samples; on average, we ≈930 exon-exon junctions ("neojunctions") typically...

10.1016/j.ccell.2018.07.001 article EN cc-by-nc-nd Cancer Cell 2018-08-01
Claudia Calabrese Natalie R. Davidson Deniz Demircioğlu Nuno A. Fonseca Yao He and 95 more André Kahles Kjong-Van Lehmann Fenglin Liu Yuichi Shiraishi Cameron M. Soulette Lara Urban Claudia Calabrese Natalie R. Davidson Deniz Demircioğlu Nuno A. Fonseca Yao He André Kahles Kjong-Van Lehmann Fenglin Liu Yuichi Shiraishi Cameron M. Soulette Lara Urban Liliana Greger Siliang Li Dongbing Liu Marc D. Perry Qian Xiang Fan Zhang Junjun Zhang Peter J. Bailey Serap Erkek Katherine A. Hoadley Yong Hou Matthew R. Huska Helena Kilpinen Jan O. Korbel Maximillian G. Marin Julia Markowski Tannistha Nandi Qiang Pan‐Hammarström Chandra Sekhar Pedamallu Reiner Siebert Stefan G. Stark Hong Su Patrick Tan Sebastian M. Waszak Christina K. Yung Shida Zhu Philip Awadalla Chad J. Creighton Matthew Meyerson B. F. Francis Ouellette Kui Wu Huanming Yang Nuno A. Fonseca André Kahles Kjong-Van Lehmann Lara Urban Cameron M. Soulette Yuichi Shiraishi Fenglin Liu Yao He Deniz Demircioğlu Natalie R. Davidson Claudia Calabrese Junjun Zhang Marc D. Perry Qian Xiang Liliana Greger Siliang Li Dongbing Liu Stefan G. Stark Fan Zhang Samirkumar B. Amin Peter J. Bailey Aurélien Chateigner Isidro Cortés‐Ciriano Brian Craft Serap Erkek Milana Frenkel‐Morgenstern Mary J. Goldman Katherine A. Hoadley Yong Hou Matthew R. Huska Ekta Khurana Helena Kilpinen Jan O. Korbel Fabien C. Lamaze David K. Chang Xiaobo Li Xinyue Li Xingmin Liu Maximillian G. Marin Julia Markowski Tannistha Nandi Morten M. Nielsen Akinyemi I. Ojesina Qiang Pan‐Hammarström Peter J. Park Chandra Sekhar Pedamallu

Abstract Transcript alterations often result from somatic changes in cancer genomes 1 . Various forms of RNA have been described cancer, including overexpression 2 , altered splicing 3 and gene fusions 4 ; however, it is difficult to attribute these underlying genomic owing heterogeneity among patients tumour types, the relatively small cohorts for whom samples analysed by both transcriptome whole-genome sequencing. Here we present, our knowledge, most comprehensive catalogue...

10.1038/s41586-020-1970-0 article EN cc-by Nature 2020-02-05

Abstract Understanding and predicting molecular responses in single cells upon chemical, genetic or mechanical perturbations is a core question biology. Obtaining single-cell measurements typically requires the to be destroyed. This makes learning heterogeneous perturbation challenging as we only observe unpaired distributions of perturbed non-perturbed cells. Here leverage theory optimal transport recent advent input convex neural architectures present CellOT, framework for response...

10.1038/s41592-023-01969-x article EN cc-by Nature Methods 2023-09-28
Yiqun Zhang Fengju Chen Nuno A. Fonseca Yao He Masashi Fujita and 95 more Hidewaki Nakagawa Zemin Zhang Alvis Brāzma Samirkumar B. Amin Philip Awadalla Peter J. Bailey Alvis Brāzma Angela N. Brooks Claudia Calabrese Aurélien Chateigner Isidro Cortés‐Ciriano Brian Craft David Craft Chad J. Creighton Natalie R. Davidson Deniz Demircioğlu Serap Erkek Nuno A. Fonseca Milana Frenkel‐Morgenstern Mary J. Goldman Liliana Greger Jonathan Göke Yao He Katherine A. Hoadley Yong Hou Matthew R. Huska André Kahles Ekta Khurana Helena Kilpinen Jan O. Korbel Fabien C. Lamaze Kjong-Van Lehmann David K. Chang Siliang Li Xiaobo Li Xinyue Li Dongbing Liu Fenglin Liu Xingmin Liu Maximillian G. Marin Julia Markowski Matthew Meyerson Tannistha Nandi Morten Muhlig Nielsen Akinyemi I. Ojesina B. F. Francis Ouellette Qiang Pan‐Hammarström Peter J. Park Chandra Sekhar Pedamallu Jakob Skou Pedersen Marc D. Perry Gunnar Rätsch Roland F. Schwarz Yuichi Shiraishi Reiner Siebert Cameron M. Soulette Stefan G. Stark Oliver Stegle Hong Su Patrick Tan Bin Tean Teh Lara Urban Jian Wang Sebastian M. Waszak Kui Wu Qian Xiang Heng Xiong Sergei Yakneen Huanming Yang Chen Ye Christina K. Yung Fan Zhang Junjun Zhang Xiuqing Zhang Zemin Zhang Liangtao Zheng Jingchun Zhu Shida Zhu Kadir C. Akdemir Eva G. Álvarez Adrian Baez‐Ortega Rameen Beroukhim Paul C. Boutros David D.L. Bowtell Benedikt Brors Kathleen H. Burns Peter J. Campbell Kin Chan Ken Chen Isidro Cortés‐Ciriano Ana Dueso-Barroso Andrew Dunford Paul A. Edwards Xavier Estivill Dariush Etemadmoghadam

Abstract The impact of somatic structural variants (SVs) on gene expression in cancer is largely unknown. Here, as part the ICGC/TCGA Pan-Cancer Analysis Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data and RNA from a common set 1220 cases, we report hundreds genes for presence within 100 kb an SV breakpoint associates with altered expression. For majority these genes, increases rather than decreases corresponding events. Up-regulated cancer-associated impacted...

10.1038/s41467-019-13885-w article EN cc-by Nature Communications 2020-02-05
Stefan G. Stark Joanna Ficek Francesco Locatello Ximena Bonilla Stéphane Chevrier and 95 more Franziska Singer Rudolf Aebersold Faisal Alquaddoomi Jonas Albinus Ilaria Alborelli Sonali Andani Per-Olof Attinger Marina Bacac Daniel Baumhoer Beatrice Beck‐Schimmer Niko Beerenwinkel Christian Beisel Lara Bernasconi Anne Bertolini Bernd Bodenmiller Ximena Bonilla Ruben Casanova Stéphane Chevrier Natalia Chicherova Maya D’Costa Esther Danenberg Natalie R. Davidson Monica-Andreea Dră gan Reinhard Dummer Stefanie Engler Martin Erkens Katja Eschbach Cinzia Esposito André Fedier Pedro Ferreira Joanna Ficek Anja Frei Bruno S. Frey Sandra Goetze Linda Grob Gabriele Gut Detlef Günther Martina Haberecker Pirmin Haeuptle Viola Heinzelmann‐Schwarz Sylvia Herter René Holtackers Tamara Huesser Anja Irmisch Francis Jacob Alice K. Jacobs Tim M. Jaeger Katharina Jahn Alva Rani James Philip Jermann André Kahles Abdullah Kahraman Viktor H. Koelzer Werner Kuebler Jack Kuipers Christian P. Kunze Christian Kurzeder Kjong-Van Lehmann Mitchell Levesque Sebastian Lugert Gerd Maass Markus G. Manz Philipp Markolin Julien Mena Ulrike Menzel Julian M. Metzler Nicola Miglino Emanuela S. Milani Holger Moch Simone Muenst Riccardo Murri Charlotte K.Y. Ng Stefan Nicolet Marta Nowak Patrick G. A. Pedrioli Lucas Pelkmans Salvatore Piscuoglio Michael Prummer Mathilde Ritter Christian Rommel María L. Rosano-González Gunnar Rätsch Natascha Santacroce Jacobo Sarabia del Castillo Ramona Schlenker Petra Schwalie Severin Schwan Tobias Schär Gabriela Senti Franziska Singer Sujana Sivapatham Berend Snijder Bettina Sobottka Vipin T. Sreedharan Stefan G. Stark

Recent technological advances have led to an increase in the production and availability of single-cell data. The ability integrate a set multi-technology measurements would allow identification biologically or clinically meaningful observations through unification perspectives afforded by each technology. In most cases, however, profiling technologies consume used cells thus pairwise correspondences between datasets are lost. Due sheer size can acquire, scalable algorithms that able...

10.1093/bioinformatics/btaa843 article EN cc-by Bioinformatics 2020-09-14

Pancreatic adenocarcinoma (PDAC) epitomizes a deadly cancer driven by abnormal KRAS signaling. Here, we show that the eIF4A RNA helicase is required for translation of key signaling molecules and pharmacological inhibition has single-agent activity against murine human PDAC models at safe dose levels. EIF4A was uniquely mRNAs with long highly structured 5' untranslated regions, including those multiple G-quadruplex elements. Computational analyses identified these features in encoding...

10.1158/0008-5472.can-20-2929 article EN Cancer Research 2021-02-25
Bettina Sobottka Marta Nowak Anja Frei Martina Haberecker Samuel Merki and 95 more Mitchell P. Levesque Reinhard Dummer H. Moch Viktor H. Koelzer Rudolf Aebersold Melike Ak Faisal Alquaddoomi Jonas Albinus Ilaria Alborelli Sonali Andani Per-Olof Attinger Marina Bacac Daniel Baumhoer Beatrice Beck‐Schimmer Niko Beerenwinkel Christian Beisel Lara Bernasconi Anne Bertolini Bernd Bodenmiller Ximena Bonilla Ruben Casanova Stéphane Chevrier Natalia Chicherova Maya D’Costa Esther Danenberg Natalie J. Davidson Monica-Andreea Drăganmoch Stefanie Engler Martin Erkens Katja Eschbach Cinzia Esposito André Fedier Pedro Ferreira Joanna Ficek Bruno S. Frey Sandra Goetze Linda Grob Gabriele Gut Detlef Günther Martina Haberecker Pirmin Haeuptle Viola Heinzelmann‐Schwarz Sylvia Herter René Holtackers Tamara Huesser Anja Irmisch Francis Jacob Alice K. Jacobs Tim M. Jaeger Katharina Jahn Alva Rani James Philip Jermann André Kahles Abdullah Kahraman Werner Kuebler Jack Kuipers Christian P. Kunze Christian Kurzeder Kjong-Van Lehmann Sebastian Lugert Gerd Maass Markus G. Manz Philipp Markolin Julien Mena Ulrike Menzel Julian M. Metzler Nicola Miglino Emanuela S. Milani Simone Muenst Riccardo Murri Charlotte K.Y. Ng Stefan Nicolet Patrick G. A. Pedrioli Lucas Pelkmans Salvatore Piscuoglio Michael Prummer Mathilde Ritter Christian Rommel María L. Rosano-González Gunnar Rätsch Natascha Santacroce Jacobo Sarabia del Castillo Ramona Schlenker Petra Schwalie Severin Schwan Tobias Schär Gabriela Senti Franziska Singer Sujana Sivapatham Berend Snijder Vipin T. Sreedharan Stefan G. Stark Daniel J. Stekhoven Alexandre Theocharides Tinu M. Thomas

CD8+ tumor-infiltrating T cells can be regarded as one of the most relevant predictive biomarkers in immune-oncology. Highly infiltrated tumors, referred to inflamed (clinically "hot"), show favorable response immune checkpoint inhibitors contrast tumors with a scarce infiltrate called desert or excluded "cold"). Nevertheless, quantitative and reproducible methods examining their prevalence within are lacking. We therefore established computational diagnostic algorithm quantitatively measure...

10.1038/s41374-021-00653-y article EN cc-by Laboratory Investigation 2021-08-26

ABSTRACT Motivation Deep learning techniques have yielded tremendous progress in the field of computational biology over last decade, however many these are opaque to user. To provide interpretable results, methods incorporated biological priors directly into task; one such prior is pathway structure. While pathways represent most processes cell, high level correlation and hierarchical structure make it complicated determine an appropriate representation. Results Here, we present module...

10.1101/2021.01.28.428664 preprint EN cc-by-nc-nd bioRxiv (Cold Spring Harbor Laboratory) 2021-01-30

Abstract We present the most comprehensive catalogue of cancer-associated gene alterations through characterization tumor transcriptomes from 1,188 donors Pan-Cancer Analysis Whole Genomes project. Using matched whole-genome sequencing data, we attributed RNA to germline and somatic DNA alterations, revealing likely genetic mechanisms. identified 444 associations expression with non-coding single-nucleotide variants. found 1,872 splicing associated mutation in intronic regions, including...

10.1101/183889 preprint EN bioRxiv (Cold Spring Harbor Laboratory) 2017-09-03

Abstract The ability to understand and predict molecular responses towards external perturbations is a core question in biology. Technological advancements the recent past have enabled generation of high-resolution single-cell data, making it possible profile individual cells under different experimentally controlled perturbations. However, are typically destroyed during measurement, resulting unpaired distributions over either perturbed or non-perturbed cells. Leveraging theory optimal...

10.1101/2021.12.15.472775 preprint EN cc-by-nc bioRxiv (Cold Spring Harbor Laboratory) 2021-12-15

Abstract Motivation Several recently developed single-cell DNA sequencing technologies enable whole-genome of thousands cells. However, the ultra-low coverage sequenced data (<0.05× per cell) mostly limits their usage to identification copy number alterations in multi-megabase segments. Many tumors are not number-driven, and thus single-nucleotide variant (SNV)-based subclone detection may contribute a more comprehensive view on intra-tumor heterogeneity. Due low data, SNVs is only...

10.1093/bioinformatics/btac510 article EN cc-by Bioinformatics 2022-07-28

Abstract Understanding and predicting molecular responses in single cells upon chemical, genetic, or mechanical perturbations is a core question biology. Obtaining single-cell measurements typically requires the to be destroyed. This makes learning heterogeneous perturbation challenging as we only observe unpaired distributions of perturbed nonperturbed cells. Here leverage theory optimal transport recent advent convex neural architectures present CellOT, framework for response individual...

10.21203/rs.3.rs-1805107/v1 preprint EN cc-by Research Square (Research Square) 2022-07-07

The recent adoption of Electronic Health Records (EHRs) by health care providers has introduced an important source data that provides detailed and highly specific insights into patient phenotypes over large cohorts. These datasets, in combination with machine learning statistical approaches, generate new opportunities for research clinical care. However, many methods require the representations to be structured formats, while information EHR is often locked unstructured texts designed human...

10.48550/arxiv.1904.12973 preprint EN other-oa arXiv (Cornell University) 2019-01-01

A bstract Motivation Recent technological advances have led to an increase in the production and availability of single-cell data. The ability integrate a set multi-technology measurements would allow identification biologically or clinically meaningful observations through unification perspectives afforded by each technology. In most cases, however, profiling technologies consume used cells thus pairwise correspondences between datasets are lost. Due sheer size can acquire, scalable...

10.1101/2020.06.11.146845 preprint EN cc-by-nc-nd bioRxiv (Cold Spring Harbor Laboratory) 2020-06-12
Alexander Immer Stefan G. Stark Francis Jacob Ximena Bonilla Tinu Thomas and 95 more André Kahles Sandra Goetze Emanuela S. Milani Bernd Wollscheid Rudolf Aebersold Melike Ak Faisal Alquaddoomi Silvana I. Albert Jonas Albinus Ilaria Alborelli Sonali Andani Per-Olof Attinger Marina Bacac Daniel Baumhoer Beatrice Beck‐Schimmer Niko Beerenwinkel Christian Beisel Lara Bernasconi Anne Bertolini Bernd Bodenmiller Ximena Bonilla Lars Bosshard Byron Calgua Ruben Casanova Stéphane Chevrier Natalia Chicherova Ricardo Coelho Maya D’Costa Esther Danenberg Natalie R. Davidson Monica-Andreea Drăgan Reinhard Dummer Stefanie Engler Martin Erkens Katja Eschbach Cinzia Esposito André Fedier Pedro Ferreira Joanna Ficek-Pascual Anja Frei Bruno S. Frey Sandra Goetze Linda Grob Gabriele Gut Detlef Günther Pirmin Haeuptle Viola Heinzelmann‐Schwarz Sylvia Herter René Holtackers Tamara Huesser Alexander Immer Anja Irmisch Francis Jacob Alice K. Jacobs Tim M. Jaeger Katharina Jahn Alva Rani James Philip Jermann André Kahles Abdullah Kahraman Viktor H. Koelzer Werner Kuebler Jack Kuipers Christian P. Kunze Christian Kurzeder Kjong-Van Lehmann Mitchell Levesque Ulrike Lischetti Flavio C. Lombardo Sebastian Lugert Gerd Maass Markus G. Manz Philipp Markolin Martin Mehnert Julien Mena Julian M. Metzler Nicola Miglino Emanuela S. Milani Holger Moch Simone Muenst Riccardo Murri Charlotte K.Y. Ng Stefan Nicolet Marta Nowak Mónica Núñez López Patrick G. A. Pedrioli Lucas Pelkmans Salvatore Piscuoglio Michael Prummer Prélot Laurie Natalie Rimmer Mathilde Ritter Christian Rommel María L. Rosano-González Gunnar Rätsch

Multimodal profiling strategies promise to produce more informative insights into biomedical cohorts via the integration of information each modality contributes. To perform this integration, however, development novel analytical is needed. often come at expense lower sample numbers, which can challenge methods uncover shared signals across a cohort. Thus, factor analysis approaches are commonly used for high-dimensional data in molecular biology, they typically do not yield representations...

10.1093/bioinformatics/btae216 article EN cc-by Bioinformatics 2024-04-12

Abstract New and effective therapeutics are urgently needed for the treatment of pancreatic ductal adenocarcinoma (PDAC). The eIF4A/DDX2 RNA helicase drives translation mRNAs with highly structured 5′UTRs. natural compound silvestrol synthetic analogues potent selective inhibitors eIF4A1/2 that show promising activity in models hematologic malignancies. Here, we have nanomolar against PDAC cell lines organoids vitro. Moreover, see single-agent KRAS/p53 mouse model also xenograft primary,...

10.1158/1557-3125.ras18-b44 article EN Molecular Cancer Research 2020-05-01

Abstract Pancreatic cancer is one of the most aggressive cancers with no targeted therapy available. RNA translation activated in pancreatic and at same time also refractory to mTor inhibition. We have used a inhibitor for eIF4A, helicase that downstream mTOR signaling can be functionally cancer. establish Silvestrol its analog CR-31B showed potent anti-tumor activity cell lines vitro vivo. Silvestrol/CR-31B reduced cells organoids growth derived from mouse model human patient samples vitro....

10.1158/1538-7445.panca16-a56 article EN Cancer Research 2016-12-14

We present a novel probabilistic clustering model for objects that are represented via pairwise distances and observed at different time points. The proposed method utilizes the information given by adjacent points to find underlying cluster structure obtain smooth evolution. This approach allows number of clusters differ every point, no identification on identities is needed. Further, does not require being specified in advance -- they instead determined automatically using Dirichlet...

10.48550/arxiv.1504.03701 preprint EN other-oa arXiv (Cornell University) 2015-01-01

Pediatric high grade gliomas (pHGG) are among the most common malignant brain tumors in childhood and account for majority of cancer related mortality this age group. The recent discovery two recurrent mutations tail histone variant H3.3, resulting either a substitution Glycine at position 34 (G34R/V) or Lysine 27 (K27 M), has deepened our understanding tumor entity led to new molecular classification system. However, functional consequences these on biology remain largely unknown....

10.1055/s-0033-1353460 article EN Klinische Pädiatrie 2013-11-07
Coming Soon ...