M. R. Hoffmann

ORCID: 0000-0002-7051-5558
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Quantum Computing Algorithms and Architecture
  • Quantum Information and Cryptography
  • Quantum and electron transport phenomena
  • Quantum many-body systems
  • Neural Networks and Reservoir Computing
  • Advancements in Semiconductor Devices and Circuit Design
  • Quantum Mechanics and Applications
  • Neural Networks and Applications
  • Semiconductor materials and devices
  • Non-Destructive Testing Techniques
  • Ultrasonics and Acoustic Wave Propagation
  • Topological Materials and Phenomena
  • Cold Atom Physics and Bose-Einstein Condensates
  • Random lasers and scattering media
  • Algebraic structures and combinatorial models
  • Theoretical and Computational Physics
  • Research Data Management Practices
  • Physics of Superconductivity and Magnetism
  • Quantum, superfluid, helium dynamics
  • Scientific Computing and Data Management
  • Quantum optics and atomic interactions
  • Mechanical and Optical Resonators

Google (United States)
2019-2024

University of California, Riverside
2022

Abstract Practical quantum computing will require error rates well below those achievable with physical qubits. Quantum correction 1,2 offers a path to algorithmically relevant by encoding logical qubits within many qubits, for which increasing the number of enhances protection against errors. However, introducing more also increases sources, so density errors must be sufficiently low performance improve code size. Here we report measurement qubit scaling across several sizes, and...

10.1038/s41586-022-05434-1 article EN cc-by Nature 2023-02-22

10.1038/s41586-023-06505-7 article EN cc-by Nature 2023-10-18

Indistinguishability of particles is a fundamental principle quantum mechanics

10.1038/s41586-023-05954-4 article EN cc-by Nature 2023-05-11

Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin one-dimensional Heisenberg model were conjectured as to belong Kardar-Parisi-Zhang (KPZ) universality class based on scaling infinite-temperature spin-spin correlation function. a chain 46 superconducting qubits, we studied probability distribution magnetization transferred across chain's center, [Formula: see text]. The first two moments text] show superdiffusive...

10.1126/science.adi7877 article EN Science 2024-04-04

Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for simulation of high-temperature superconductivity or magnetism. Using up 49 superconducting qubits, we prepared low-energy transverse-field Ising model through coupling auxiliary qubits. In one dimension, observed long-range correlations and a ground-state fidelity 0.86 18 qubits at critical point. two dimensions, found mutual information that extends beyond...

10.1126/science.adh9932 article EN Science 2024-03-21

Undesired coupling to the surrounding environment destroys long-range correlations in quantum processors and hinders coherent evolution nominally available computational space. This noise is an outstanding challenge when leveraging computation power of near-term

10.1038/s41586-024-07998-6 article EN cc-by-nc-nd Nature 2024-10-09

Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $\mathbb{Z}_2$ parity symmetry. Remarkably, find that any multi-qubit Pauli operator overlapping MEMs uniform late-time decay rate comparable to single-qubit relaxation...

10.1126/science.abq5769 article EN Science 2022-11-17

Systems of correlated particles appear in many fields modern science and represent some the most intractable computational problems nature. The challenge these systems arises when interactions become comparable to other energy scales, which makes state each particle depend on all particles1. lack general solutions for three-body problem acceptable theory strongly electrons shows that our understanding fades number or interaction strength increases. One hallmarks interacting is formation...

10.1038/s41586-022-05348-y article EN cc-by Nature 2022-12-07

We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device matched to 50 Ω environment with Klopfenstein-taper impedance transformer and achieves bandwidth 250–300 MHz input saturation powers up −95 dBm at 20 dB gain. A 54-qubit Sycamore processor was used benchmark these devices, providing calibration for readout power, estimation added noise, platform comparison against standard...

10.1063/5.0127375 article EN Applied Physics Letters 2023-01-02

10.1038/s41567-023-02226-w article EN cc-by Nature Physics 2023-10-05

Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for simulation of high-temperature superconductivity or magnetism. Using up 49 superconducting qubits, we prepared low-energy transverse-field Ising model through coupling auxiliary qubits. In one dimension, observed long-range correlations and a ground-state fidelity 0.86 18 qubits at critical point. two dimensions, found mutual information that extends beyond...

10.48550/arxiv.2304.13878 preprint EN cc-by arXiv (Cornell University) 2023-01-01

Abstract Measurement has a special role in quantum theory 1 : by collapsing the wavefunction it can enable phenomena such as teleportation 2 and thereby alter "arrow of time" that constrains unitary evolution. When integrated many-body dynamics, measurements lead to emergent patterns information space-time 3-10 go beyond established paradigms for characterizing phases, either or out equilibrium 11-13 . On present-day NISQ processors 14 , experimental realization this physics is challenging...

10.21203/rs.3.rs-2671289/v1 preprint EN cc-by Research Square (Research Square) 2023-04-04
Trond I. Andersen Nikita Astrakhantsev Amir H. Karamlou Julia Berndtsson Johannes Motruk and 95 more Aaron Szasz Jonathan A. Gross Tom Westerhout Yaxing Zhang Ebrahim Forati Dario Rossi Bryce Kobrin Agustín Di Paolo Andrey R. Klots Ilya Drozdov Vladislav D. Kurilovich Andre Petukhov L. B. Ioffe Andreas Elben Aniket Rath Vittorio Vitale Benoît Vermersch Rajeev Acharya Laleh Aghababaie Beni Kyle Anderson M. Ansmann Frank Arute Kunal Arya Abraham Asfaw Juan Atalaya Brian Ballard Joseph C. Bardin Andreas Bengtsson Alexander Bilmes Gina Bortoli Alexandre Bourassa Jenna Bovaird L. Brill Michael Broughton David A. Browne Brett Buchea Bob B. Buckley David A. Buell T. Burger Brian Burkett Nicholas Bushnell Anthony Cabrera Juan Campero Hung-Shen Chang Zijun Chen B. Chiaro Jahan Claes Agnetta Y. Cleland Josh Cogan Roberto Collins Paul Conner William Courtney Alexander L. Crook Sayan Das Dripto M. Debroy Laura de Lorenzo Alexander Del Toro Barba Sean Demura Michel Devoret Paul Donohoe A. Dunsworth Clint Earle Alec Eickbusch Aviv Moshe Elbag Mahmoud Elzouka Catherine Erickson Lara Faoro Reza Fatemi Vinicius S. Ferreira Leslie Flores Burgos Austin G. Fowler Brooks Foxen Suhas Ganjam Robert Gasca W. Giang Craig Gidney D. Gilboa Marissa Giustina Raja Gosula Alejandro Grajales Dau Dietrich Graumann Alexander T. Greene Steve Habegger Michael C. Hamilton Monica Hansen Matthew P. Harrigan Sean D. Harrington Stephen Heslin Paula Heu Gordon Hill M. R. Hoffmann Hsin-Yuan Huang Trent Huang Ashley Huff William J. Huggins

Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final characterization. We present simulator comprising 69 superconducting qubits which supports both universal gates high-fidelity analog with performance beyond reach classical simulation in cross-entropy benchmarking...

10.48550/arxiv.2405.17385 preprint EN arXiv (Cornell University) 2024-05-27

Leakage of quantum information out computational states into higher energy represents a major challenge in the pursuit error correction (QEC). In QEC circuit, leakage builds over time and spreads through multi-qubit interactions. This leads to correlated errors that degrade exponential suppression logical with scale, challenging feasibility as path towards fault-tolerant computation. Here, we demonstrate execution distance-3 surface code distance-21 bit-flip on Sycamore processor where is...

10.48550/arxiv.2211.04728 preprint EN cc-by arXiv (Cornell University) 2022-01-01

Indistinguishability of particles is a fundamental principle quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, Abelian anyons this guarantees that the braiding identical leaves system unchanged. However, in two spatial dimensions, an intriguing possibility exists: non-Abelian causes rotations space topologically degenerate wavefunctions. Hence, it can change observables without violating indistinguishability. Despite well developed...

10.48550/arxiv.2210.10255 preprint EN cc-by arXiv (Cornell University) 2022-01-01
Jesse C. Hoke Matteo Ippoliti Eliott Rosenberg Dmitry A. Abanin Rajeev Acharya and 95 more Trond I. Andersen M. Ansmann Frank Arute Kunal Arya Abraham Asfaw Juan Atalaya Joseph C. Bardin Andreas Bengtsson Gina Bortoli Alexandre Bourassa Jenna Bovaird Leon Brill Michael Broughton Bob B. Buckley David A. Buell Tim Burger Brian Burkett Nicholas Bushnell Zijun Chen B. Chiaro Desmond Chik Josh Cogan Roberto Collins Paul Conner William Courtney Alexander L. Crook Ben Curtin Alejandro Grajales Dau Dripto M. Debroy Alexander Del Toro Barba Sean Demura Augustin Di Paolo Ilya Drozdov A. Dunsworth Daniel Eppens Catherine Erickson Edward Farhi Reza Fatemi Vinicius S. Ferreira Leslie Flores Burgos Ebrahim Forati Austin G. Fowler Brooks Foxen W. Giang Craig Gidney Dar Gilboa Marissa Giustina Raja Gosula Jonathan A. Gross Steve Habegger Michael C. Hamilton Monica Hansen Matthew P. Harrigan Sean D. Harrington Paula Heu M. R. Hoffmann Sabrina Hong Trent Huang Ashley Huff William J. Huggins Sergei V. Isakov Justin Iveland Evan Jeffrey Cody Jones Pavol Juhás Dvir Kafri Kostyantyn Kechedzhi Tanuj Khattar Mostafa Khezri Mária Kieferová Seon Kim Alexei Kitaev Paul V. Klimov Andrey R. Klots Alexander N. Korotkov Fedor Kostritsa John Mark Kreikebaum David Landhuis Pavel Laptev Kim-Ming Lau Lily Laws Joonho Lee Kenny W. Lee Yuri D. Lensky Brian Lester Alexander T. Lill Wayne Liu Aditya Locharla Orion Martin Jarrod R. McClean Matt McEwen Kevin C. Miao Amanda Mieszala Shirin Montazeri Alexis Morvan

Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter "arrow of time" that constrains unitary evolution. When integrated many-body dynamics, measurements lead to emergent patterns information space-time go beyond established paradigms for characterizing phases, either or out equilibrium. On present-day NISQ processors, experimental realization this physics is challenging due noise, hardware...

10.48550/arxiv.2303.04792 preprint EN cc-by arXiv (Cornell University) 2023-01-01
Gaurav Gyawali Tyler A. Cochran Yuri D. Lensky Eliott Rosenberg Amir H. Karamlou and 95 more Kostyantyn Kechedzhi Julia Berndtsson Tom Westerhout Abraham Asfaw Dmitry A. Abanin Rajeev Acharya Laleh Aghababaie Beni Trond I. Andersen M. Ansmann Frank Arute Kunal Arya Nikita Astrakhantsev Juan Atalaya Ryan Babbush Brian Ballard Joseph C. Bardin Andreas Bengtsson Alexander Bilmes Gina Bortoli Alexandre Bourassa Jenna Bovaird L. Brill Michael Broughton David A. Browne Brett Buchea Bob B. Buckley David A. Buell T. Burger Brian Burkett Nicholas Bushnell Anthony Cabrera Juan Campero Hung-Shen Chang Zijun Chen B. Chiaro Jahan Claes Agnetta Y. Cleland Josh Cogan Roberto Collins Paul Conner William Courtney Alexander L. Crook Sayan Das Dripto M. Debroy Laura de Lorenzo Alexander Del Toro Barba Sean Demura Agustín Di Paolo Paul Donohoe Ilya Drozdov A. Dunsworth Clint Earle Alec Eickbusch Aviv Moshe Elbag Mahmoud Elzouka Catherine Erickson Lara Faoro Reza Fatemi Vinicius S. Ferreira Leslie Flores Burgos Ebrahim Forati Austin G. Fowler Brooks Foxen Suhas Ganjam Robert Gasca W. Giang Craig Gidney D. Gilboa Raja Gosula Alejandro Grajales Dau Dietrich Graumann Alexander T. Greene Jonathan A. Gross Steve Habegger Michael C. Hamilton Monica Hansen Matthew P. Harrigan Sean D. Harrington Stephen Heslin Paula Heu Gordon Hill J. Hilton M. R. Hoffmann Hsin-Yuan Huang Ashley Huff William J. Huggins L. B. Ioffe Sergei V. Isakov E. Jeffrey Jiang Zhang Cody Jones Stephen P. Jordan Chaitali Joshi Pavol Juhás Dvir Kafri

One of the most challenging problems in computational study localization quantum manybody systems is to capture effects rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a processor, leveraging parallelism, efficiently sample all observe without many-body dynamics one and two dimensions: perturbations do not diffuse even though both generator evolution initial states are fully translationally invariant. The strength as...

10.48550/arxiv.2410.06557 preprint EN arXiv (Cornell University) 2024-10-09

The rise of Generative AI (GenAI) brings about transformative potential across sectors, but its dual-use nature also amplifies risks. Governments globally are grappling with the challenge regulating GenAI, balancing innovation against safety. China, United States (US), and European Union (EU) at forefront initiatives like Management Algorithmic Recommendations, Executive Order, Act, respectively. However, rapid evolution GenAI capabilities often outpaces development comprehensive safety...

10.48550/arxiv.2407.12999 preprint EN arXiv (Cornell University) 2024-05-21

Abstract An important measure of the development quantum computing platforms has been simulation increasingly complex physical systems [1–3]. Prior to fault-tolerant computing, robust error mitigation strategies are necessary continue this growth [4–11]. Here, we study within seniority-zero electron pairing subspace, which affords both a computational stepping stone fully correlated model [12–17], and an opportunity validate recently introduced “purification-based” error-mitigation [8–10]....

10.21203/rs.3.rs-2185180/v1 preprint EN cc-by Research Square (Research Square) 2022-11-17
Coming Soon ...