Robert Gasca

ORCID: 0009-0007-8263-091X
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Quantum Computing Algorithms and Architecture
  • Quantum Information and Cryptography
  • Advanced Data Storage Technologies
  • Neural Networks and Reservoir Computing
  • Advanced Electrical Measurement Techniques
  • Quantum optics and atomic interactions
  • Quantum and electron transport phenomena
  • Physics of Superconductivity and Magnetism
  • Random lasers and scattering media
  • Computational Geometry and Mesh Generation
  • Quantum-Dot Cellular Automata
  • Computational Physics and Python Applications
  • Advancements in Semiconductor Devices and Circuit Design

Google (United States)
2023-2024

10.1038/s41586-024-08449-y article EN cc-by-nc-nd Nature 2024-12-09

We demonstrate a Josephson parametric amplifier design with band-pass impedance-matching network based on third-order Chebyshev prototype. measured eight amplifiers operating at 4.6 GHz that exhibit gains of 20 dB less than 1-dB gain ripple and bandwidth up to 500 MHz. The further achieve high-output-saturation powers around $\ensuremath{-}73\phantom{\rule{0.2em}{0ex}}\mathrm{dBm}$ the use rf superconducting quantum interference device arrays as their nonlinear element. characterize system...

10.1103/physrevapplied.20.054058 article EN Physical Review Applied 2023-11-28

Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into logical qubit, where the rate is suppressed exponentially as more are added. However, this exponential suppression only occurs if below critical threshold. In work, we present two surface code memories operating threshold: distance-7 and distance-5 integrated with real-time decoder. The of our larger memory factor $\Lambda$ = 2.14 $\pm$ 0.02 when increasing distance two,...

10.48550/arxiv.2408.13687 preprint EN arXiv (Cornell University) 2024-08-24
Trond I. Andersen Nikita Astrakhantsev Amir H. Karamlou Julia Berndtsson Johannes Motruk and 95 more Aaron Szasz Jonathan A. Gross Tom Westerhout Yaxing Zhang Ebrahim Forati Dario Rossi Bryce Kobrin Agustín Di Paolo Andrey R. Klots Ilya Drozdov Vladislav D. Kurilovich Andre Petukhov L. B. Ioffe Andreas Elben Aniket Rath Vittorio Vitale Benoît Vermersch Rajeev Acharya Laleh Aghababaie Beni Kyle Anderson M. Ansmann Frank Arute Kunal Arya Abraham Asfaw Juan Atalaya Brian Ballard Joseph C. Bardin Andreas Bengtsson Alexander Bilmes Gina Bortoli Alexandre Bourassa Jenna Bovaird L. Brill Michael Broughton David A. Browne Brett Buchea Bob B. Buckley David A. Buell T. Burger Brian Burkett Nicholas Bushnell Anthony Cabrera Juan Campero Hung-Shen Chang Zijun Chen B. Chiaro Jahan Claes Agnetta Y. Cleland Josh Cogan Roberto Collins Paul Conner William Courtney Alexander L. Crook Sayan Das Dripto M. Debroy Laura de Lorenzo Alexander Del Toro Barba Sean Demura Michel Devoret Paul Donohoe A. Dunsworth Clint Earle Alec Eickbusch Aviv Moshe Elbag Mahmoud Elzouka Catherine Erickson Lara Faoro Reza Fatemi Vinicius S. Ferreira Leslie Flores Burgos Austin G. Fowler Brooks Foxen Suhas Ganjam Robert Gasca W. Giang Craig Gidney D. Gilboa Marissa Giustina Raja Gosula Alejandro Grajales Dau Dietrich Graumann Alexander T. Greene Steve Habegger Michael C. Hamilton Monica Hansen Matthew P. Harrigan Sean D. Harrington Stephen Heslin Paula Heu Gordon Hill M. R. Hoffmann Hsin-Yuan Huang Trent Huang Ashley Huff William J. Huggins

Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final characterization. We present simulator comprising 69 superconducting qubits which supports both universal gates high-fidelity analog with performance beyond reach classical simulation in cross-entropy benchmarking...

10.48550/arxiv.2405.17385 preprint EN arXiv (Cornell University) 2024-05-27
Gaurav Gyawali Tyler A. Cochran Yuri D. Lensky Eliott Rosenberg Amir H. Karamlou and 95 more Kostyantyn Kechedzhi Julia Berndtsson Tom Westerhout Abraham Asfaw Dmitry A. Abanin Rajeev Acharya Laleh Aghababaie Beni Trond I. Andersen M. Ansmann Frank Arute Kunal Arya Nikita Astrakhantsev Juan Atalaya Ryan Babbush Brian Ballard Joseph C. Bardin Andreas Bengtsson Alexander Bilmes Gina Bortoli Alexandre Bourassa Jenna Bovaird L. Brill Michael Broughton David A. Browne Brett Buchea Bob B. Buckley David A. Buell T. Burger Brian Burkett Nicholas Bushnell Anthony Cabrera Juan Campero Hung-Shen Chang Zijun Chen B. Chiaro Jahan Claes Agnetta Y. Cleland Josh Cogan Roberto Collins Paul Conner William Courtney Alexander L. Crook Sayan Das Dripto M. Debroy Laura de Lorenzo Alexander Del Toro Barba Sean Demura Agustín Di Paolo Paul Donohoe Ilya Drozdov A. Dunsworth Clint Earle Alec Eickbusch Aviv Moshe Elbag Mahmoud Elzouka Catherine Erickson Lara Faoro Reza Fatemi Vinicius S. Ferreira Leslie Flores Burgos Ebrahim Forati Austin G. Fowler Brooks Foxen Suhas Ganjam Robert Gasca W. Giang Craig Gidney D. Gilboa Raja Gosula Alejandro Grajales Dau Dietrich Graumann Alexander T. Greene Jonathan A. Gross Steve Habegger Michael C. Hamilton Monica Hansen Matthew P. Harrigan Sean D. Harrington Stephen Heslin Paula Heu Gordon Hill J. Hilton M. R. Hoffmann Hsin-Yuan Huang Ashley Huff William J. Huggins L. B. Ioffe Sergei V. Isakov E. Jeffrey Jiang Zhang Cody Jones Stephen P. Jordan Chaitali Joshi Pavol Juhás Dvir Kafri

One of the most challenging problems in computational study localization quantum manybody systems is to capture effects rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a processor, leveraging parallelism, efficiently sample all observe without many-body dynamics one and two dimensions: perturbations do not diffuse even though both generator evolution initial states are fully translationally invariant. The strength as...

10.48550/arxiv.2410.06557 preprint EN arXiv (Cornell University) 2024-10-09
Tyler A. Cochran B. Jobst Eliott Rosenberg Yuri D. Lensky Gaurav Gyawali and 95 more Norhan M. Eassa Melissa Will Dmitry A. Abanin Rajeev Acharya Laleh Aghababaie Beni Trond I. Andersen M. Ansmann Frank Arute Kunal Arya Abraham Asfaw Juan Atalaya Ryan Babbush Brian Ballard Joseph C. Bardin Andreas Bengtsson Alexander Bilmes Alexandre Bourassa Jenna Bovaird Michael Broughton David A. Browne Brett Buchea Bob B. Buckley T. Burger Brian Burkett Nicholas Bushnell Anthony Cabrera J. Campero Hung-Shen Chang Zijun Chen B. Chiaro Jahan Claes Agnetta Y. Cleland Josh Cogan Roberto Collins Paul Conner William Courtney Alexander L. Crook Ben Curtin Sayan Das Sean Demura Laura de Lorenzo Agustín Di Paolo Paul Donohoe Ilya Drozdov A. Dunsworth Alec Eickbusch Aviv Moshe Elbag Mahmoud Elzouka Catherine Erickson Vinicius S. Ferreira Leslie Flores Burgos Ebrahim Forati Austin G. Fowler Brooks Foxen Suhas Ganjam Robert Gasca Élie Genois W. Giang Dar Gilboa Raja Gosula Alejandro Grajales Dau Dietrich Graumann Alexander T. Greene Jonathan A. Gross Steve Habegger Monica Hansen Matthew P. Harrigan Sean D. Harrington Paula Heu Oscar Higgott J. Hilton Hsin-Yuan Huang Ashley Huff William J. Huggins Evan Jeffrey Jiang Zhang Cody Jones Chaitali Joshi Pavol Juhás Dvir Kafri Hui Kang Amir H. Karamlou Kostyantyn Kechedzhi Trupti Khaire Tanuj Khattar Mostafa Khezri Seon Kim Paul V. Klimov Bryce Kobrin Alexander N. Korotkov Fedor Kostritsa John Mark Kreikebaum Vladislav D. Kurilovich David Landhuis Tiano Lange-Dei

Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics effective descriptions many-body interactions materials. Studying dynamical properties emergent phases challenging as it requires solving problems that are generally beyond perturbative limits. We investigate the dynamics local excitations $\mathbb{Z}_2$ LGT using two-dimensional lattice superconducting qubits. first construct simple variational...

10.48550/arxiv.2409.17142 preprint EN arXiv (Cornell University) 2024-09-25

Quantum error correction is essential for bridging the gap between rates of physical devices and extremely low logical required quantum algorithms. Recent error-correction demonstrations on superconducting processors have focused primarily surface code, which offers a high threshold but poses limitations operations. In contrast, color code enables much more efficient logic, although it requires complex stabilizer measurements decoding techniques. Measuring these stabilizers in planar...

10.48550/arxiv.2412.14256 preprint EN arXiv (Cornell University) 2024-12-18

A remarkable characteristic of quantum computing is the potential for reliable computation despite faulty qubits. This can be achieved through error correction, which typically implemented by repeatedly applying static syndrome checks, permitting correction logical information. Recently, development time-dynamic approaches to has uncovered new codes and code implementations. In this work, we experimentally demonstrate three implementations surface code, each offering a unique solution...

10.48550/arxiv.2412.14360 preprint EN arXiv (Cornell University) 2024-12-18

We demonstrate a Josephson parametric amplifier design with band-pass impedance matching network based on third-order Chebyshev prototype. measured eight amplifiers operating at 4.6 GHz that exhibit gains of 20 dB less than 1 gain ripple and up to 500 MHz bandwidth. The further achieve high output saturation powers around -73 dBm the use rf-SQUID arrays as their nonlinear element. characterize system readout efficiency its signal-to-noise ratio near using Sycamore processor, finding data...

10.48550/arxiv.2305.17816 preprint EN other-oa arXiv (Cornell University) 2023-01-01
Coming Soon ...