- Mathematical and Theoretical Epidemiology and Ecology Models
- Nonlinear Differential Equations Analysis
- Evolution and Genetic Dynamics
- Fractional Differential Equations Solutions
- COVID-19 epidemiological studies
- Mathematical Biology Tumor Growth
- Nonlinear Partial Differential Equations
- Advanced Mathematical Physics Problems
- Nonlinear Dynamics and Pattern Formation
- Insect Resistance and Genetics
- Insect and Pesticide Research
- Stochastic processes and statistical mechanics
- Differential Equations and Boundary Problems
- Mosquito-borne diseases and control
- Insect Pest Control Strategies
- Insect symbiosis and bacterial influences
- Pressure Ulcer Prevention and Management
- Nonlinear Photonic Systems
- Diffusion and Search Dynamics
- Cytokine Signaling Pathways and Interactions
- Spectral Theory in Mathematical Physics
- Lung Cancer Diagnosis and Treatment
- Stability and Controllability of Differential Equations
- Quantum chaos and dynamical systems
- Metaheuristic Optimization Algorithms Research
Lanzhou University
2013-2025
Jiangxi Academy of Sciences
2023-2025
Shaoxing University
2024
Lanzhou University of Finance and Economics
2023
Jiangxi Academy of Agricultural Sciences
2022
Shaoxing People's Hospital
2018
Zhejiang University
2018
Culex pipiens quinquefasciatus is a notorious vector transmitting severe diseases such as Zika virus and West Nile to humans worldwide. Vermistatin type of funicon-like compound was first isolated from Penicillin vermiculatum in the 1970s. has shown promising activity against Cx. p. larvae our previous research. Here, we conducted transcriptomic analysis treated with median lethal concentration 28.13 mg/L vermistatin. Differential expression identified 1055 vermistatin-responsive genes, 477...
In this paper, we consider a Kermack-McKendrick epidemic model withnonlocal dispersal. We find that the existence and nonexistence oftraveling wave solutions are determined by reproduction number.To prove of nontrivial traveling solutions, weconstruct an invariant cone in bounded domain with initialfunctions being defined on, apply Schauder's fixed point theoremas well as limitingargument. Here, compactness support set dispersal kernel is needed when passing to unbounded proof. Moreover,...
This paper is concerned with traveling wave solutions of a nonlocal dispersal SIR epidemic model standard incidence. We show that our results on existence and nonexistence are determined by the basic reproduction number corresponding ordinary differential minimal speed. These threshold dynamics proved constructing an invariant cone applying Schauder's fixed point theorem this Laplace transform. The main difficulties lack occurrence regularizing effect loss order-preserving property model.
This paper is concerned with a nonlocal dispersal susceptible-infected-susceptible (SIS) epidemic model Dirichlet boundary condition, where the rates of disease transmission and recovery are assumed to be spatially heterogeneous. We introduce basic reproduction number $R_0$ establish threshold-type results on global dynamic in terms R0. More specifically, we show that if less than one, then will extinct, larger persist. Particularly, our imply infected individuals may suppress spread even...
Infection mechanism plays a significant role in epidemic models. To investigate the influence of saturation effect, nonlocal (convolution) dispersal susceptible-infected-susceptible model with saturated incidence is considered. We first study impact rates and total population size on basic reproduction number. Yang, Li Ruan ( J. Differ. Equ. 267 (2019) 2011–2051) obtained limit number as rate tends to zero or infinity under condition that corresponding weighted eigenvalue problem has unique...
This paper is concerned with the traveling wave solutions of a diffusive SIR system nonlocal delay. We obtain existence and nonexistence solutions, which formulate propagation disease without outbreak threshold. Moreover, it proved that at any fixed moment, faster spreads, more infected individuals, larger recovery/remove ratio is, less individuals.
This paper is concerned with the propagation phenomenon of a three species predation-competition system nonlocal dispersal and climate change effects. That to say, there not only competition for food, but also competitive interaction between two preys. The growth rate each prey nondecreasing along $ x $-axis shifts rightward at speed s $. We mainly consider population dynamics cases: (ⅰ) predator spreads faster than preys, (ⅱ) preys (ⅲ) slower behind including multiple layers different...
This paper is concerned with the spreading or vanishing of a epidemic disease which characterized by diffusion SIS model nonlocal incidence rate and double free boundaries. We get full information about sufficient conditions that ensure vanishing, exhibits detailed description communicable mechanism disease. Our results imply interaction may enhance spread
Abstract This paper is concerned with the travelling waves for a class of non-local dispersal non-cooperative system, which can model prey-predator and disease-transmission mechanism. By Schauder's fixed-point theorem, we first establish existence connecting semi-trivial equilibrium to non-trivial leftover concentrations, whose bounds are deduced from precise analysis. Further, characterize minimal wave speed obtain non-existence slow speed. Finally, apply general results an epidemic...
In this paper, we are concerned with the propagation dynamics of a nonlocal dispersal predator–prey model one predator and two preys. Accurately, mainly study invading phenomenon an alien to habitat aborigine preys, which is depicted by traveling waves connecting predator-free state co-existence state. We characterize minimal wave speed process based on application Schauder’s fixed point theorem help generalized upper-lower solutions Lyapunov argument. Particularly, discussion critical more...
Artificial intelligence technology has attained rapid development in recent years. The integration of artificial applications into pressure reduction mattresses, giving rise to intelligence-powered is expected provide personalised intelligent solutions, through automatic user's data-based adjustment the patient's local condition prevent injury. purpose this study was investigate effectiveness smart decompression prevention postoperative medium- and high-risk injury middle-aged elderly patients.
This paper is concerned with the principal eigenvalues of some nonlocal operators. We first derive a result on limit certain sequences associated eigenvalue problems. Then, such used to study existence, uniqueness and asymptotic behavior positive solutions stationary problem parameter. Finally, long-time corresponding evolution equation parameter are discussed.