C.S. Kang

ORCID: 0009-0005-0797-8735
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Nuclear reactor physics and engineering
  • Nuclear and radioactivity studies
  • Nuclear Materials and Properties
  • Graphite, nuclear technology, radiation studies
  • Neutrino Physics Research
  • Advanced NMR Techniques and Applications
  • Particle physics theoretical and experimental studies
  • Astrophysics and Cosmic Phenomena
  • Dark Matter and Cosmic Phenomena
  • Risk and Safety Analysis
  • Spacecraft and Cryogenic Technologies
  • Nuclear Physics and Applications
  • Solid-state spectroscopy and crystallography
  • thermodynamics and calorimetric analyses
  • Radiation Detection and Scintillator Technologies
  • Geophysics and Gravity Measurements
  • Nuclear physics research studies
  • Nuclear Engineering Thermal-Hydraulics
  • Combustion and Detonation Processes
  • Superconducting Materials and Applications
  • Radioactive contamination and transfer

Institute for Basic Science
2025

Abstract AMoRE-II aims to search for neutrinoless double beta decay ( $$0\nu \beta $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mi>ν</mml:mi> <mml:mi>β</mml:mi> </mml:mrow> </mml:math> ) with an array of 423 $$\hbox {Li}_2^{100}\hbox {MoO}_4$$ <mml:msubsup> <mml:mtext>Li</mml:mtext> <mml:mn>2</mml:mn> <mml:mn>100</mml:mn> </mml:msubsup> <mml:msub> <mml:mtext>MoO</mml:mtext> <mml:mn>4</mml:mn> </mml:msub> crystals operating in the cryogenic...

10.1140/epjc/s10052-024-13516-9 article EN cc-by The European Physical Journal C 2025-01-08

The AMoRE-II experiment will search for the 0 νββ decay of 100 Mo nuclei using molybdate crystal scintillators, operating at milli-Kelvin (mK) temperatures, with a total 80 kg Mo. background goal is 10 –4 counts/keV/kg/year in region interest around Q-value 3,034 keV. To achieve this level, rate signals arising from emissions produced by decays radioactive impurities detector and shielding materials must be strictly controlled. do this, concentrations such are measured controlled through...

10.3389/fphy.2024.1362209 article EN cc-by Frontiers in Physics 2024-06-10

Abstract The AMoRE collaboration searches for neutrinoless double beta decay of $$^{100}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mmultiscripts> <mml:mrow/> <mml:mn>100</mml:mn> </mml:mmultiscripts> </mml:math> Mo using molybdate scintillating crystals via low temperature thermal calorimetric detection. early phases the experiment, AMoRE-pilot and AMoRE-I, have demonstrated competitive discovery potential. Presently, AMoRE-II featuring a large detector array with...

10.1140/epjc/s10052-024-13498-8 article EN cc-by The European Physical Journal C 2025-02-11

AMoRE searches for the neutrinoless double beta decay using 100 kg of enriched Mo100. Scintillating molybdate crystals coupled with a metallic magnetic calorimeter operate at milli-Kelvin temperatures to measure energy electrons emitted in decay. AMoRE-I is demonstrator full-scale AMoRE, operated Yangyang Underground Laboratory over two years. The exposure was 8.02 year (or 3.89 kgMo100 year), and total background rate near Q value 0.025±0.002 counts/keV/kg/year. We observed no indication...

10.1103/physrevlett.134.082501 article EN Physical Review Letters 2025-02-27

The AMoRE collaboration searches for neutrinoless double beta decay of $^{100}$Mo using molybdate scintillating crystals via low temperature thermal calorimetric detection. early phases the experiment, AMoRE-pilot and AMoRE-I, have demonstrated competitive discovery potential. Presently, AMoRE-II featuring a large detector array with about 90 kg isotope, is under construction.This paper discusses baseline design characterization lithium cryogenic calorimeters to be used in modules. results...

10.48550/arxiv.2407.12227 preprint EN arXiv (Cornell University) 2024-07-16

AMoRE-II aims to search for neutrinoless double beta decay with an array of 423 Li$_2$$^{100}$MoO$_4$ crystals operating in the cryogenic system as main phase Advanced Molybdenum-based Rare process Experiment (AMoRE). AMoRE has been planned operate three phases: AMoRE-pilot, AMoRE-I, and AMoRE-II. is currently being installed at Yemi Underground Laboratory, located approximately 1000 meters deep Jeongseon, Korea. The goal reach up $T^{0\nu\beta\beta}_{1/2}$ $\sim$ 6 $\times$ 10$^{26}$ years,...

10.48550/arxiv.2406.09698 preprint EN arXiv (Cornell University) 2024-06-13
Coming Soon ...