N. Arnaud

ORCID: 0000-0001-6589-8673
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Particle physics theoretical and experimental studies
  • Quantum Chromodynamics and Particle Interactions
  • High-Energy Particle Collisions Research
  • Pulsars and Gravitational Waves Research
  • Neutrino Physics Research
  • Gamma-ray bursts and supernovae
  • Dark Matter and Cosmic Phenomena
  • Geophysics and Gravity Measurements
  • Particle Detector Development and Performance
  • Astrophysical Phenomena and Observations
  • Particle Accelerators and Free-Electron Lasers
  • Atomic and Subatomic Physics Research
  • Medical Imaging Techniques and Applications
  • Cosmology and Gravitation Theories
  • Computational Physics and Python Applications
  • Superconducting Materials and Applications
  • Black Holes and Theoretical Physics
  • Geophysics and Sensor Technology
  • Astrophysics and Cosmic Phenomena
  • Seismic Waves and Analysis
  • Radiation Detection and Scintillator Technologies
  • High-pressure geophysics and materials
  • Radio Astronomy Observations and Technology
  • Nuclear physics research studies
  • Advanced Frequency and Time Standards

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie
2020-2025

European Gravitational Observatory
2017-2024

Université Paris-Saclay
2012-2024

Institut National de Physique Nucléaire et de Physique des Particules
2015-2024

Centre National de la Recherche Scientifique
2015-2024

Campus France
2024

Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
2024

University of Bremen
2024

Université Paris-Sud
2012-2021

GANIL
2005-2021

On September 14, 2015 at 09:50:45 UTC the two detectors of Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with peak strain 1.0×10(-21). It matches waveform predicted by general relativity for inspiral and merger pair black holes ringdown resulting single hole. was matched-filter signal-to-noise ratio 24 false alarm rate estimated be less than 1 event per 203,000 years,...

10.1103/physrevlett.116.061102 article EN cc-by Physical Review Letters 2016-02-11

We report the observation of a gravitational-wave signal produced by coalescence two stellar-mass black holes. The signal, GW151226, was observed twin detectors Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. initially identified within 70 s an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with network signal-to-noise ratio 13 and significance greater than 5 $\sigma$. persisted in...

10.1103/physrevlett.116.241103 article EN cc-by Physical Review Letters 2016-06-15

We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:mn>1</a:mn><a:mtext> </a:mtext><a:mtext> </a:mtext><a:msub><a:mrow><a:mi>M</a:mi></a:mrow><a:mrow><a:mo stretchy="false">⊙</a:mo></a:mrow></a:msub></a:mrow></a:math> during first and second observing runs of advanced detector network. During run (<d:math...

10.1103/physrevx.9.031040 article EN cc-by Physical Review X 2019-09-04

On 2017 August 17, the gravitational-wave event GW170817 was observed by Advanced LIGO and Virgo detectors, gamma-ray burst (GRB) GRB 170817A independently Fermi Gamma-ray Burst Monitor, Anticoincidence Shield for Spectrometer International Gamma-Ray Astrophysics Laboratory. The probability of near-simultaneous temporal spatial observation occurring chance is $5.0\times 10^{-8}$. We therefore confirm binary neutron star mergers as a progenitor short GRBs. association provides new insight...

10.3847/2041-8213/aa920c article EN cc-by The Astrophysical Journal Letters 2017-10-16

On 17 August 2017, the LIGO and Virgo observatories made first direct detection of gravitational waves from coalescence a neutron star binary system. The this gravitational-wave signal, GW170817, offers novel opportunity to directly probe properties matter at extreme conditions found in interior these stars. initial, minimal-assumption analysis data placed constraints on tidal effects coalescing bodies, which were then translated radii. Here, we expand upon previous analyses by working under...

10.1103/physrevlett.121.161101 article EN publisher-specific-oa Physical Review Letters 2018-10-15

On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and two LIGO detectors coherently observed a transient gravitational-wave signal produced by coalescence of stellar mass black holes, with false-alarm rate ≲1 in 27 000 years. The was three-detector network matched-filter signal-to-noise ratio 18. inferred masses initial holes are 30.5_{-3.0}^{+5.7}M_{⊙} 25.3_{-4.2}^{+2.8}M_{⊙} (at 90% credible level). luminosity distance source is 540_{-210}^{+130} Mpc, corresponding to...

10.1103/physrevlett.119.141101 article EN cc-by Physical Review Letters 2017-10-06

On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected gamma-ray burst (GRB 170817A) delay of $\sim$1.7 s respect to time. From gravitational-wave signal, source initially localized sky region 31 deg$^2$ at luminosity distance $40^{+8}_{-8}$ Mpc component masses consistent stars. were later...

10.22323/1.362.0019 article EN cc-by-nc-nd 2020-11-23

The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion a compact-object binary in large-velocity, highly nonlinear regime, and witness final merger excitation uniquely relativistic modes gravitational field. We carry out several investigations determine whether is consistent with black-hole general relativity. find that remnant's mass spin, as determined from low-frequency (inspiral) high-frequency (postinspiral) phases signal, are mutually solution...

10.1103/physrevlett.116.221101 article EN publisher-specific-oa Physical Review Letters 2016-05-31

On June 8, 2017 at 02:01:16.49 UTC, a gravitational-wave signal from the merger of two stellar-mass black holes was observed by Advanced LIGO detectors with network signal-to-noise ratio 13. This system is lightest hole binary so far observed, component masses $12^{+7}_{-2}\,M_\odot$ and $7^{+2}_{-2}\,M_\odot$ (90% credible intervals). These lie in range measured low-mass X-ray binaries, thus allowing us to compare detected through gravitational waves electromagnetic observations. The...

10.3847/2041-8213/aa9f0c article EN cc-by The Astrophysical Journal Letters 2017-12-18

On August 17, 2017, the Advanced LIGO and Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of source signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as host galaxy. In this work, we improve estimates binary's properties, including component masses, spins, tidal parameters, using known location, improved modeling, recalibrated data. We extend range frequencies considered down 23 Hz, compared 30 Hz in...

10.1103/physrevx.9.011001 article EN cc-by Physical Review X 2019-01-02

On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Virgo observed a short duration gravitational-wave signal, GW190521, with three-detector network signal-to-noise ratio of 14.7, an estimated false-alarm rate 1 in 4900 yr using search sensitive to generic transients. If GW190521 is from quasicircular binary inspiral, then the detected signal consistent merger two black holes masses 85_{-14}^{+21} M_{⊙} 66_{-18}^{+17} (90% credible intervals). We infer that primary hole mass lies within gap...

10.1103/physrevlett.125.101102 article EN cc-by Physical Review Letters 2020-09-02

On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize properties of source and its parameters. The data around time event were analyzed coherently across LIGO network using suite accurate waveform models that describe gravitational waves from compact binary system in general relativity. GW150914 was produced by nearly equal mass black hole masses 36_{-4}^{+5}M_{⊙} 29_{-4}^{+4}M_{⊙}; for each...

10.1103/physrevlett.116.241102 article EN cc-by Physical Review Letters 2016-06-14

The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw detections gravitational waves binary black hole mergers. In this paper we present full results a search for merger signals with total masses up $100 M_\odot$ and detailed implications our observations these systems. Our search, based on general-relativistic models wave systems, unambiguously identified two signals, GW150914 GW151226, significance greater than $5\sigma$ over observing...

10.1103/physrevx.6.041015 article EN cc-by Physical Review X 2016-10-21

We present results on the mass, spin, and redshift distributions with phenomenological population models using ten binary black hole mergers detected in first second observing runs completed by Advanced LIGO Virgo. constrain properties of (BBH) mass spectrum a range parameterizations BBH spin distributions. find that distribution more massive such binaries is well approximated no than 1% holes $45\,M_\odot$, power law index $\alpha = {1.3}^{+1.4}_{-1.7}$ (90% credibility). also show BBHs are...

10.3847/2041-8213/ab3800 article EN The Astrophysical Journal Letters 2019-09-09

The discovery of the gravitational-wave source GW150914 with Advanced LIGO detectors provides first observational evidence for existence binary black-hole systems that inspiral and merge within age Universe. Such mergers have been predicted in two main types formation models, involving isolated binaries galactic fields or dynamical interactions young old dense stellar environments. measured masses robustly demonstrate relatively "heavy" black holes ($\gtrsim 25\, M_\odot$) can form nature....

10.3847/2041-8205/818/2/l22 article EN The Astrophysical Journal Letters 2016-02-11

We report on the population of 47 compact binary mergers detected with a false-alarm rate 1/yr in second LIGO--Virgo Gravitational-Wave Transient Catalog, GWTC-2. observe several characteristics merging black hole (BBH) not discernible until now. First, we find that primary mass spectrum contains structure beyond power-law sharp high-mass cut-off; it is more consistent broken power law break at $39.7^{+20.3}_{-9.1}\,M_\odot$, or Gaussian feature peaking $33.1^{+4.0}_{-5.6}\,M_\odot$ (90\%...

10.3847/2041-8213/abe949 article EN cc-by The Astrophysical Journal Letters 2021-05-01

The detection of gravitational waves by Advanced LIGO and Virgo provides an opportunity to test general relativity in a regime that is inaccessible traditional astronomical observations laboratory tests. We present four tests the consistency data with binary black hole waveforms predicted relativity. One subtracts best-fit waveform from checks residual detector noise. second low- high-frequency parts observed signals. third phenomenological deviations introduced model (including...

10.1103/physrevd.100.104036 article EN publisher-specific-oa Physical review. D/Physical review. D. 2019-11-20

We report the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent neutron star-black hole (NSBH) binaries. The events are named GW200105_162426 GW200115_042309, abbreviated as GW200105 GW200115; first was observed by LIGO Livingston Virgo, second all three LIGO-Virgo detectors. source has component masses $8.9^{+1.2}_{-1.5}\,M_\odot$ $1.9^{+0.3}_{-0.2}\,M_\odot$, whereas GW200115...

10.3847/2041-8213/ac082e article EN cc-by The Astrophysical Journal Letters 2021-06-29

Following a major upgrade, the two advanced detectors of Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With strain sensitivity 10^{-23}/sqrt[Hz] at 100 Hz, product observable volume measurement time exceeded that all previous runs within 16 days coincident observation. On 14, 2015, Advanced LIGO observed transient gravitational-wave signal determined to be coalescence black holes [B. P. Abbott et al.,...

10.1103/physrevlett.116.131103 article EN publisher-specific-oa Physical Review Letters 2016-03-31

On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo was also taking data that did not contribute to detection due low ratio, but were used for subsequent parameter estimation. 90% credible intervals component masses range from 1.12 2.52 $M_{\odot}$ (1.45 1.88 if we restrict dimensionless spin magnitudes be smaller than 0.05). These mass parameters are consistent individual components being neutron stars. However,...

10.3847/2041-8213/ab75f5 article EN cc-by The Astrophysical Journal Letters 2020-03-19

We report on gravitational wave discoveries from compact binary coalescences detected by Advanced LIGO and Virgo in the first half of third observing run (O3a) between 1 April 2019 15:00 UTC October 15:00. By imposing a false-alarm-rate threshold two per year each four search pipelines that constitute our search, we present 39 candidate events. At this threshold, expect contamination fraction less than 10%. Of these, 26 events were reported previously near real-time through GCN Notices...

10.1103/physrevx.11.021053 article EN cc-by Physical Review X 2021-06-09

We report the observation of gravitational waves from a binary-black-hole coalescence during first two weeks LIGO's and Virgo's third observing run. The signal was recorded on April 12, 2019 at 05:30:44 UTC with network signal-to-noise ratio 19. binary is different observations runs most notably due to its asymmetric masses: ~30 solar mass black hole merged ~8 companion. more massive rotated dimensionless spin magnitude between 0.22 0.60 (90% probability). Asymmetric systems are predicted...

10.1103/physrevd.102.043015 article EN cc-by Physical review. D/Physical review. D. 2020-08-24
Coming Soon ...