Kamalaker Dadi

ORCID: 0000-0003-2214-1050
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Functional Brain Connectivity Studies
  • Neural dynamics and brain function
  • Mental Health Research Topics
  • Brain Tumor Detection and Classification
  • EEG and Brain-Computer Interfaces
  • Advanced MRI Techniques and Applications
  • Meta-analysis and systematic reviews
  • Dementia and Cognitive Impairment Research
  • Advanced Neuroimaging Techniques and Applications
  • Biomedical and Engineering Education
  • Blind Source Separation Techniques
  • Health disparities and outcomes
  • Retinal Imaging and Analysis
  • Advanced Memory and Neural Computing
  • Neurobiology of Language and Bilingualism
  • Medical Imaging and Analysis
  • Circadian rhythm and melatonin
  • Photoreceptor and optogenetics research
  • AI in cancer detection
  • Advanced Graph Neural Networks
  • Health and Medical Research Impacts
  • Acute Ischemic Stroke Management
  • Gene expression and cancer classification
  • Sleep and Wakefulness Research
  • Neonatal and fetal brain pathology

Indian Institute of Technology Hyderabad
2022-2024

Inria Saclay - Île de France
2019-2022

Université Paris-Saclay
2016-2022

Commissariat à l'Énergie Atomique et aux Énergies Alternatives
2016-2022

CEA Paris-Saclay
2016-2022

International Institute of Information Technology, Hyderabad
2022

Institut national de recherche en informatique et en automatique
2020

Rotem Botvinik‐Nezer Felix Holzmeister Colin F. Camerer Anna Dreber Jürgen Huber and 95 more Magnus Johannesson Michael Kirchler Roni Iwanir Jeanette A. Mumford R. Alison Adcock Paolo Avesani Błażej M. Bączkowski Aahana Bajracharya Leah Bakst Sheryl Ball Marco Barilari Nadège Bault Derek Beaton Julia Beitner Roland G. Benoit Ruud Berkers Jamil P. Bhanji Bharat B. Biswal Sebastian Bobadilla-Suarez Tiago Bortolini Katherine L. Bottenhorn Alexander Bowring Senne Braem Hayley R. Brooks Emily G. Brudner Cristian Buc Calderon Julia A. Camilleri Jaime J. Castrellon Luca Cecchetti Edna C. Cieslik Zachary J. Cole Olivier Collignon Robert W. Cox William A. Cunningham Stefan Czoschke Kamalaker Dadi Charles P. Davis Alberto De Luca Mauricio R. Delgado Lysia Demetriou Jeffrey B. Dennison Xin Di Erin W. Dickie Ekaterina Dobryakova Claire Donnat Juergen Dukart Niall W. Duncan Joke Durnez Amr Eed Simon B. Eickhoff Andrew Erhart Laura Fontanesi G. Matthew Fricke Shiguang Fu Adriana Gálvan Rémi Gau Sarah Genon Tristan Glatard Enrico Glerean Jelle J. Goeman Sergej Golowin Carlos González‐García Krzysztof J. Gorgolewski Cheryl L. Grady Mikella A Green João F. Guassi Moreira Olivia Guest Shabnam Hakimi J. Paul Hamilton Roeland Hancock Giacomo Handjaras Bronson Harry Colin Hawco Peer Herholz Gabrielle Herman Stephan Heunis Felix Hoffstaedter Jeremy Hogeveen Susan Holmes Hu Chuan-Peng Scott A. Huettel Matthew Hughes Vittorio Iacovella Alexandru D. Iordan Peder Mortvedt Isager Ayse Ilkay Isik Andrew Jahn Matthew R. Johnson Tom Johnstone Michael Joseph Anthony Juliano Joseph W. Kable Michalis Kassinopoulos Cemal Koba Xiangzhen Kong

10.1038/s41586-020-2314-9 article EN Nature 2020-05-20

Population imaging markedly increased the size of functional-imaging datasets, shedding new light on neural basis inter-individual differences. Analyzing these large data entails scalability challenges, computational and statistical. For this reason, brain images are typically summarized in a few signals, for instance reducing voxel-level measures with atlases or functional modes. A good choice corresponding networks is important, as most analyses start from reduced signals. We contribute...

10.1016/j.neuroimage.2020.117126 article EN cc-by-nc-nd NeuroImage 2020-07-13
Rotem Botvinik‐Nezer Felix Holzmeister Colin F. Camerer Anna Dreber Jürgen Huber and 95 more Magnus Johannesson Michael Kirchler Roni Iwanir Jeanette A. Mumford Alison Adcock Paolo Avesani Błażej M. Bączkowski Aahana Bajracharya Leah Bakst Sheryl Ball Marco Barilari Nadège Bault Derek Beaton Julia Beitner Roland G. Benoit Ruud Berkers Jamil P. Bhanji Bharat B. Biswal Sebastian Bobadilla-Suarez Tiago Bortolini Katherine L. Bottenhorn Alexander Bowring Senne Braem Hayley R. Brooks Emily G. Brudner Cristian Buc Calderon Julia A. Camilleri Jaime J. Castrellon Luca Cecchetti Edna C. Cieslik Zachary J. Cole Olivier Collignon Robert W. Cox William A. Cunningham Stefan Czoschke Kamalaker Dadi Charles P. Davis Alberto De Luca Mauricio R. Delgado Lysia Demetriou Jeffrey B. Dennison Xin Di Erin W. Dickie Ekaterina Dobryakova Claire Donnat Juergen Dukart Niall W. Duncan Joke Durnez Amr Eed Simon B. Eickhoff Andrew Erhart Laura Fontanesi G. Matthew Fricke Adriana Gálvan Rémi Gau Sarah Genon Tristan Glatard Enrico Glerean Jelle J. Goeman Sergej Golowin Carlos González‐García Krzysztof J. Gorgolewski Cheryl L. Grady Mikella Green João Guassi Moreira Olivia Guest Shabnam Hakimi J. Paul Hamilton Roeland Hancock Giacomo Handjaras Bronson Harry Colin Hawco Peer Herholz Gabrielle Herman Stephan Heunis Felix Hoffstaedter Jeremy Hogeveen Susan Holmes Hu Chuan-Peng Scott A. Huettel Matthew Hughes Vittorio Iacovella Alexandru D. Iordan Peder Mortvedt Isager Ayse Ilkay Isik Andrew Jahn Matthew R. Johnson Tom Johnstone Michael Joseph Anthony Juliano Joseph W. Kable Michalis Kassinopoulos Cemal Koba Xiangzhen Kong Timothy R. Koscik

Summary Data analysis workflows in many scientific domains have become increasingly complex and flexible. To assess the impact of this flexibility on functional magnetic resonance imaging (fMRI) results, same dataset was independently analyzed by 70 teams, testing nine ex-ante hypotheses. The analytic approaches is exemplified fact that no two teams chose identical to analyze data. This resulted sizeable variation hypothesis test even for whose statistical maps were highly correlated at...

10.1101/843193 preprint EN cc-by-nc-nd bioRxiv (Cold Spring Harbor Laboratory) 2019-11-15

Abstract Background Biological aging is revealed by physical measures, e.g., DNA probes or brain scans. In contrast, individual differences in mental function are explained psychological constructs, intelligence neuroticism. These constructs typically assessed tailored neuropsychological tests that build on expert judgement and require careful interpretation. Could machine learning large samples from the general population be used to proxy measures of these do not human intervention? Results...

10.1093/gigascience/giab071 article EN GigaScience 2021-10-01
Rémi Gau Stephanie Noble Katja Heuer Katherine L. Bottenhorn Isil Poyraz Bilgin and 95 more Yufang Yang Julia M. Huntenburg Johanna Bayer Richard A.I. Bethlehem Shawn A. Rhoads Christoph Vogelbacher Valentina Borghesani Elizabeth Levitis Hao-Ting Wang Sofie Van Den Bossche Xenia Kobeleva Jon Haitz Legarreta Samuel Guay Melvin Selim Atay Gael P. Varoquaux Dorien Huijser Malin Sandström Peer Herholz Samuel A. Nastase AmanPreet Badhwar Guillaume Dumas Simon Schwab Stefano Moia Michael Dayan Yasmine Bassil Paula P. Brooks Matteo Mancini James M. Shine David O’Connor Xihe Xie Davide Poggiali Patrick Friedrich Anibal Sólon Heinsfeld Lydia Riedl Roberto Toro César Caballero‐Gaudes Anders Eklund Kelly Garner Christopher Nolan Damion V. Demeter Fernando A. Barrios Junaid S. Merchant Elizabeth A. McDevitt Robert Oostenveld R. Cameron Craddock Ariel Rokem Andrew Doyle Satrajit Ghosh Aki Nikolaidis Olivia W. Stanley Eneko Uruñuela Nasim Anousheh Aurina Arnatkevic̆iūtė Guillaume Auzias Dipankar Bachar Élise Bannier Ruggero Basanisi Arshitha Basavaraj Marco Bedini Pierre Bellec R. Austin Benn Kathryn Berluti Steffen Bollmann Saskia Bollmann Claire Bradley Jesse A. Brown Augusto Buchweitz Patrick Callahan Micaela Y. Chan Bramsh Q. Chandio Theresa W Cheng Sidhant Chopra Ai Wern Chung Thomas Close Etienne Combrisson Giorgia Cona R. Todd Constable Claire Cury Kamalaker Dadi Pablo F. Damasceno Samir Das Fabrizio De Vico Fallani Krista DeStasio Erin W. Dickie Lena Dorfschmidt Eugene Duff Elizabeth DuPré Sarah L. Dziura Nathália Bianchini Esper Oscar Estéban Shreyas Fadnavis Guillaume Flandin Jessica Flannery John C. Flournoy Stephanie J. Forkel

10.1016/j.neuron.2021.04.001 article EN publisher-specific-oa Neuron 2021-04-30

Previous literature has focused on predicting a diagnostic label from structural brain imaging. Since subtle changes in the precede cognitive decline healthy and pathological aging, our study predicts future as continuous trajectory instead. Here, we tested whether baseline multimodal neuroimaging data improve prediction of aging. Nonbrain (demographics, clinical, neuropsychological scores), MRI, functional connectivity OASIS-3 (N = 662; age 46–96 years) were entered into cross-validated...

10.1016/j.neurobiolaging.2022.06.008 article EN cc-by Neurobiology of Aging 2022-06-28

Autism spectrum disorder (ASD) is a neurodevelopmental predominantly found in children. The current behavior-based diagnosis of ASD arduous and requires expertise. Therefore, it appealing to develop an accurate computer-aided tool for diagnosing ASD. Although resting-state functional magnetic resonance imaging (rsfMRI) has proven be successful capturing the neural organization brain, automated detection using rsfMRI scans challenging task due heterogeneity dataset limited sample size. This...

10.1109/ijcnn55064.2022.9892350 article EN 2022 International Joint Conference on Neural Networks (IJCNN) 2022-07-18

Processing neuroimaging data on the cortical surface traditionally requires dedicated heavy-weight software suites. Here, we present an initial support of surfaces in Python within processing toolbox Nilearn. We provide loading and plotting functions for different formats with minimal dependencies, along examples their application. Limitations current implementation potential next steps are discussed.

10.3897/rio.3.e12342 article EN cc-by Research Ideas and Outcomes 2017-02-23

Resting-state functional Magnetic Resonance Imaging (rs-fMRI) holds the promise of easy-to-acquire and widespectrum biomarkers. However, there are few predictivemodeling studies on resting state, processing pipelines all vary. Here, we systematically study state functionalconnectivity (FC)-based prediction across three different cohorts. Analysis consist four steps: Delineation brain regions interest (ROIs), ROI-level rs-fMRI time series signal extraction, FC estimation linear model...

10.1109/prni.2016.7552359 preprint EN 2016-06-01

Abstract Background Biological aging is revealed by physical measures, e . g ., DNA probes or brain scans. Instead, individual differences in mental function are explained psychological constructs, e.g., intelligence neuroticism. These constructs typically assessed tailored neuropsychological tests that build on expert judgement and require careful interpretation. Could machine learning large samples from the general population be used to proxy measures of these do not human intervention?...

10.1101/2020.08.25.266536 preprint EN cc-by-nd bioRxiv (Cold Spring Harbor Laboratory) 2020-08-25

Cognitive decline occurs in healthy and pathological aging, both may be preceded by subtle changes the brain — offering a basis for cognitive predictions. Previous work has largely focused on predicting diagnostic label from structural imaging. Our study broadens scope of applications to aging future as continuous trajectory, rather than label. Furthermore, since structure well function it is reasonable expect predictive gains when using multiple imaging modalities. Here, we tested whether...

10.1101/2020.06.10.142174 preprint EN cc-by-nc bioRxiv (Cold Spring Harbor Laboratory) 2020-06-12

Autism spectrum disorder (ASD) is a neurodevelopmental that predominantly occurs in children. Previous brain research ASD has mainly studied biomarkers based on the functional connectivity characterized by correlation of static temporal signals. However, dynamic and varies extensively among states. The main aim paper to understand fundamental group differences between patients typically developing (TD) subjects using (dFNC) analysis. In this study, we investigated dFNC 53 independent...

10.1109/ijcnn54540.2023.10191252 article EN 2022 International Joint Conference on Neural Networks (IJCNN) 2023-06-18

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by varied social cognitive challenges and repetitive behavioral patterns. Identifying reliable brain imaging-based biomarkers for ASD has been persistent challenge due to the spectrum's diverse symptomatology. Existing baselines in field have made significant strides this direction, yet there remains room improvement both performance interpretability. We propose \emph{HyperGALE}, which builds upon hypergraph...

10.48550/arxiv.2403.14484 preprint EN arXiv (Cornell University) 2024-03-21

10.1109/ijcnn60899.2024.10651487 article EN 2022 International Joint Conference on Neural Networks (IJCNN) 2024-06-30

Brain stroke has become a significant burden on global health and thus we need remedies prevention strategies to overcome this challenge. For this, the immediate identification of risk stratification is primary task for clinicians. To aid expert clinicians, automated segmentation models are crucial. In work, consider publicly available dataset ATLAS $v2.0$ benchmark various end-to-end supervised U-Net style models. Specifically, have benchmarked both 2D 3D brain images evaluated them using...

10.48550/arxiv.2310.07060 preprint EN cc-by arXiv (Cornell University) 2023-01-01
Coming Soon ...