Anibal Sólon Heinsfeld

ORCID: 0000-0002-2050-0614
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Functional Brain Connectivity Studies
  • Advanced MRI Techniques and Applications
  • Advanced Neuroimaging Techniques and Applications
  • African history and culture analysis
  • Biomedical and Engineering Education
  • Cell Image Analysis Techniques
  • Data Stream Mining Techniques
  • Health, Environment, Cognitive Aging
  • Genomics and Rare Diseases
  • EEG and Brain-Computer Interfaces
  • Autism Spectrum Disorder Research
  • Health and Medical Research Impacts
  • Advanced Biosensing Techniques and Applications
  • Ethics in Clinical Research
  • Neural and Behavioral Psychology Studies
  • Time Series Analysis and Forecasting
  • Evolutionary Algorithms and Applications
  • Human-Automation Interaction and Safety
  • Research Data Management Practices
  • Glioma Diagnosis and Treatment
  • Statistical Methods and Inference
  • Advanced Fluorescence Microscopy Techniques
  • Data Visualization and Analytics
  • Reinforcement Learning in Robotics
  • Multi-Agent Systems and Negotiation

The University of Texas at Austin
2020-2024

Institut des Sciences Cognitives Marc Jeannerod
2021

Child Mind Institute
2018-2020

Pontifícia Universidade Católica do Rio Grande do Sul
2016-2017

The goal of the present study was to apply deep learning algorithms identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on activation patterns. We investigated ASD data a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). is brain-based characterized by social deficits and repetitive behaviors. According recent Centers for Disease Control data, affects one in 68 children United States. patterns functional...

10.1016/j.nicl.2017.08.017 article EN cc-by-nc-nd NeuroImage Clinical 2017-08-31

Neuroscience is advancing standardization and tool development to support rigor transparency. Consequently, data pipeline complexity has increased, hindering FAIR (findable, accessible, interoperable reusable) access. brainlife.io was developed democratize neuroimaging research. The platform provides standardization, management, visualization processing automatically tracks the provenance history of thousands objects. Here, described evaluated for validity, reliability, reproducibility,...

10.1038/s41592-024-02237-2 article EN cc-by Nature Methods 2024-04-11

Data standardization promotes a common framework through which researchers can utilize others' data and is one of the leading methods neuroimaging use to share replicate findings. As today, standardizing datasets requires technical expertise such as coding knowledge file formats. We present ezBIDS, tool for converting associated metadata Brain Imaging Structure (BIDS) standard. ezBIDS contains four major features: (1) No installation or programming requirements. (2) Handling both imaging...

10.1038/s41597-024-02959-0 article EN cc-by Scientific Data 2024-02-08

Abstract When fields lack consensus standard methods and accessible ground truths, reproducibility can be more of an ideal than a reality. Such has been the case for functional neuroimaging, where there exists sprawling space tools processing pipelines. We provide critical evaluation impact differences across five independently developed minimal preprocessing pipelines MRI. show that even when handling identical data, inter-pipeline agreement was only moderate, critically shedding light on...

10.1101/2021.12.01.470790 preprint EN cc-by bioRxiv (Cold Spring Harbor Laboratory) 2021-12-03

Increasing the reproducibility of neuroimaging measurement addresses a central impediment to advancement human neuroscience and its clinical applications. Recent efforts demonstrating variance in functional brain organization within between individuals shows need for improving parcellations without long scan times. We apply bootstrap aggregation, or bagging, problem parcellation. use two large datasets demonstrate that compared standard clustering framework, bagging improves test-retest...

10.1016/j.neuroimage.2020.116678 article EN cc-by NeuroImage 2020-02-29
Rémi Gau Stephanie Noble Katja Heuer Katherine L. Bottenhorn Isil Poyraz Bilgin and 95 more Yufang Yang Julia M. Huntenburg Johanna Bayer Richard A.I. Bethlehem Shawn A Rhoads Christoph Vogelbacher Valentina Borghesani Elizabeth Levitis Hao-Ting Wang Sofie Van Den Bossche Xenia Kobeleva Jon Haitz Legarreta Samuel Guay Melvin Selim Atay Gael P. Varoquaux Dorien Huijser Malin Sandström Peer Herholz Samuel A. Nastase AmanPreet Badhwar Guillaume Dumas Simon Schwab Stefano Moia Michael Dayan Yasmine Bassil Paula P. Brooks Matteo Mancini James M. Shine David O’Connor Xihe Xie Davide Poggiali Patrick Friedrich Anibal Sólon Heinsfeld Lydia Riedl Roberto Toro César Caballero‐Gaudes Anders Eklund Kelly Garner Christopher Nolan Damion V. Demeter Fernando A. Barrios Junaid S. Merchant Elizabeth A. McDevitt Robert Oostenveld R. Cameron Craddock Ariel Rokem Andrew Doyle Satrajit Ghosh Aki Nikolaidis Olivia W. Stanley Eneko Uruñuela Nasim Anousheh Aurina Arnatkevičiūtė Guillaume Auzias Dipankar Bachar Élise Bannier Ruggero Basanisi Arshitha Basavaraj Marco Bedini Pierre Bellec R. Austin Benn Kathryn Berluti Steffen Bollmann Saskia Bollmann Claire Bradley Jesse A. Brown Augusto Buchweitz Patrick Callahan Micaela Y. Chan Bramsh Q. Chandio Theresa W Cheng Sidhant Chopra Ai Wern Chung Thomas Close Etienne Combrisson Giorgia Cona R. Todd Constable Claire Cury Kamalaker Dadi Pablo F. Damasceno Samir Das Fabrizio De Vico Fallani Krista DeStasio Erin W. Dickie Lena Dorfschmidt Eugene Duff Elizabeth DuPré Sarah L. Dziura Nathália Bianchini Esper Oscar Estéban Shreyas Fadnavis Guillaume Flandin Jessica Flannery John C. Flournoy Stephanie J. Forkel

10.1016/j.neuron.2021.04.001 article EN publisher-specific-oa Neuron 2021-04-30

The sparse group lasso is a high-dimensional regression technique that useful for problems whose predictors have naturally grouped structure and where sparsity encouraged at both the individual predictor level.In this paper we discuss new R package computing such regularized models.The intention to provide highly optimized solution routines enabling analysis of very large datasets, especially in context design matrices.

10.18637/jss.v110.i06 article EN cc-by Journal of Statistical Software 2024-01-01
Oscar Estéban Christopher J. Markiewicz Hans J. Johnson Erik Ziegler Alexandre Manhães-Savio and 95 more Dorota Jarecka Christopher Burns David Gage Ellis Carlo Hamalainen Michael Notter Benjamin Yvernault Taylor Salo Michael Waskom Mathias Goncalves Kesshi Jordan Jason H. Wong Blake E Dewey Cindee Madison Erin Benderoff Daniel J. Clark Fred Loney Dav Clark Anisha Keshavan Michael Joseph Dylan M. Nielson Michael Dayan Marc Modat Alexandre Gramfort Salma Bougacha Basile Pinsard Shoshana Berleant Horea Christian Ariel Rokem Matteo Visconti di Oleggio Castello Yaroslav O. Halchenko Jakub Kaczmarzyk Gaël Varoquaux Rastko Ćirić Brendan Moloney Elizabeth DuPré Serge Koudoro Michael G. Clark Ben Cipollini Demián Wassermann Jérémy Guillon Ross D. Markello Michael Hanke Colin R. Buchanan Rosalia Tungaraza Ashley Gillman Wolfgang M. Pauli Gilles de Hollander Sharad Sikka Jessica Forbes David Mordom Shariq Iqbal Matteo Flavio Mancini Ian B. Malone Mathieu Dubois Yannick Schwartz Caroline Frohlich Alejandro Tabas David Welch Adam Richie-Halford Steven Tilley Aimi Watanabe B. Nolan Nichols Julia M. Huntenburg Arman Eshaghi Daniel Ginsburg Alexander Schaefer Katherine L. Bottenhorn Chad Cumba Benjamin Acland Anibal Sólon Heinsfeld Erik Kastman James D. Kent Jens Kleesiek Ali Ghayoor Drew Erickson Steven Giavasis Alejandro de la Vega Franz Liem René Küttner Martin Felipe Perez-Guevara John A. Lee Jarrod Millman Jeff Lai Dale Zhou Christian Haselgrove Daniel Glen Anna Doll Mandy Renfro Carlos Gabriel Piffaretti Correa Siqi Liu Leonie Lampe Xiangzhen Kong Michael Hallquist Sin Kim Ari E. Kahn

10.5281/zenodo.3668316 article PL 2020-02-14
Oscar Estéban Christopher J. Markiewicz Christopher Burns Mathias Goncalves Dorota Jarecka and 95 more Erik Ziegler Shoshana Berleant David Gage Ellis Basile Pinsard Cindee Madison Michael Waskom Michael Notter Daniel J. Clark Alexandre Manhães-Savio Dav Clark Kesshi Jordan Michael Dayan Yaroslav O. Halchenko Fred Loney Taylor Salo Blake E Dewey Hans J. Johnson Salma Bougacha Anisha Keshavan Benjamin Yvernault Carlo Hamalainen Horea Christian Rastko Ćirić Mathieu Dubois Michael Joseph Ben Cipollini Steven Tilley Matteo Visconti di Oleggio Castello Jason H. Wong Alejandro de la Vega Jakub Kaczmarzyk Julia M. Huntenburg Michael G. Clark Erin Benderoff Drew Erickson James D. Kent Michael Hanke Steven Giavasis Brendan Moloney B. Nolan Nichols Rosalia Tungaraza Caroline Frohlich Demián Wassermann Gilles de Hollander Arman Eshaghi Jarrod Millman Matteo Flavio Mancini Dylan M. Nielson Gaël Varoquaux Aimi Watanabe David Mordom Jérémy Guillon Serge Koudoro Andrey Chetverikov Ariel Rokem Benjamin Acland Jessica Forbes Ross D. Markello Ashley Gillman Xiangzhen Kong Daniel Geisler Salvatore John Alexandre Gramfort Anna Doll Colin R. Buchanan Elizabeth DuPré Siqi Liu Alexander Schaefer Jens Kleesiek Sharad Sikka Yannick Schwartz John A. Lee Aaron Mattfeld Adam Richie-Halford Franz Liem Martin Felipe Perez-Guevara Anibal Sólon Heinsfeld Christian Haselgrove Joke Durnez Leonie Lampe Russell A. Poldrack Tristan Glatard Alejandro Tabas Chad Cumba Fernando Pérez‐García Ross Blair Shariq Iqbal David Welch William Triplett Ali Ghayoor R. Cameron Craddock Carlos Gabriel Piffaretti Correa Dimitri Papadopoulos Orfanos Jörg Stadler Joshua Warner

10.5281/zenodo.4035081 article PL 2020-09-17
Rémi Gau Stephanie Noble Katja Heuer Katherine L. Bottenhorn Isil Poyraz Bilgin and 95 more Yufang Yang Julia M. Huntenburg Johanna Bayer Richard A.I. Bethlehem Shawn A Rhoads Christoph Vogelbacher Valentina Borghesani Elizabeth Levitis Hao-Ting Wang Sofie Van Den Bossche Xenia Kobeleva Jon Haitz Legarreta Gorroño Samuel Guay Melvin Selim Atay Gael P. Varoquaux Dorien Huijser Malin Sandström Peer Herholz Samuel A. Nastase AmanPreet Badhwar Guillaume Dumas Simon Schwab Stefano Moia Michael Dayan Yasmine Bassil Paula P. Brooks Matteo Mancini James M. Shine David O’Connor Xihe Xie Davide Poggiali Anibal Sólon Heinsfeld Patrick Friedrich Lydia Riedl Roberto Toro César Caballero‐Gaudes Anders Eklund Kelly Garner Christopher Nolan Damion V. Demeter Fernando A. Barrios Junaid S. Merchant Elizabeth A. McDevitt Robert Oostenveld R. Cameron Craddock Ariel Rokem Andrew Doyle Nathália Bianchini Esper Satrajit Ghosh Georg Langs Aki Nikolaidis Olivia Stanley Eneko Uruñuela Brainhack community nasim anousheh Guillaume Auzias Aurina Arnatkevičiūtė Dipankar Bachar Élise Bannier Ruggero Basanisi Arshitha Basavaraj Marco Bedini Pierre Bellec Austin R. Benn Kathryn Berluti Saskia Bollmann Steffen Bollmann Claire Bradley Jesse A. Brown Augusto Buchweitz Patrick Callahan Micaela Y. Chan Bramsh Q. Chandio Theresa W Cheng Sidhant Chopra Ai Wern Chung Thomas Close Etienne Combrisson Giorgia Cona Robert T. Constable Claire Cury KamalakerDadi Samir Das Pablo F. Damasceno Fabrizio De Vico Fallani Krista Leigh DeStasio Erin W. Dickie Lena Dorfschmidt Eugene Duff Elizabeth DuPré Sarah L. Dziura Oscar Estéban Shreyas Fadnavis Guillaume Flandin Jessica Flannery

Brainhack is an innovative meeting format that promotes scientific collaboration and education in open inclusive environment. Departing from the formats of typical workshops, these events are based on grassroots projects training, foster reproducible practices. We describe here multifaceted, lasting benefits Brainhacks for individual participants, particularly early career researchers. further highlight unique contributions can make to research community, contributing progress by...

10.31234/osf.io/rytjq preprint EN 2021-02-12

Abstract Although neuroimaging provides powerful tools for assessing brain structure and function, their utility elucidating mechanisms underlying neuropsychiatric disorders is limited by sensitivity to head motion. Several publications have shown that standard retrospective motion correction arduous quality assessment are insufficient fully remove the deleterious impacts of on functional (fMRI) structural (sMRI) data. These residual errors tend be correlated with age clinical diagnosis,...

10.1101/2021.03.24.21253213 preprint EN medRxiv (Cold Spring Harbor Laboratory) 2021-03-26

OHBM Brainhack 2022 took place in June 2022. The first hybrid hackathon, it had an in-person component taking Glasgow and three hubs around the globe to improve inclusivity fit as many timezones possible. In buzzing setting of Queen Margaret Union virtual platform, 23 projects were presented after development. Following are reports 14 those, well a recapitulation organisation event.

10.52294/001c.92760 article EN cc-by Aperture Neuro 2024-03-18

Abstract Increasing the reproducibility of neuroimaging measurement addresses a central impediment to advancement human neuroscience and its clinical applications. Recent efforts demonstrating variance in functional brain organization within between individuals shows need for improving parcellations without long scan times. We apply bootstrap aggregation, or bagging, problem parcellation. use two large datasets demonstrate that compared standard clustering framework, bagging improves...

10.1101/343392 preprint EN cc-by bioRxiv (Cold Spring Harbor Laboratory) 2018-06-11

Ants are essentially social insects, and their organizational depen dency reflects directly on survival. Due to nature, ant society provides a rich model for analysing properties of multiagent systems such as col laboration effectiveness collective action. Modelling natural behaviour ants can help understand actions, well studying better forms co operation competition other models. In this paper, we an within stochastic environment in which is gen erated using reinforcement learning generate...

10.5753/wesaac.2015.33311 article EN 2015-06-01

JASON is an AGENTSPEAK interpreter for multi-agent system devel opment, in which agents are described the language. There fore, we only have to describe agent behavior, but environment does not follow this style, it requires a Java description of how actions and percep tions operate. This choice implementation guarantees that even complex envi ronments can be created JASON, knowledge about both JASON’s Application Programming Interface (API). In paper aim fill gap between languages with...

10.5753/wesaac.2015.33309 article EN 2015-06-01

Data standardization has become one of the leading methods neuroimaging researchers rely on for data sharing and reproducibility. promotes a common framework through which can utilize others' data. Yet, as today, formatting datasets that adhere to community best practices requires technical expertise involving coding considerable knowledge file formats standards. We describe ezBIDS, tool converting associated metadata Brain Imaging Structure (BIDS) standard. ezBIDS provides four unique...

10.48550/arxiv.2311.04912 preprint EN cc-by-sa arXiv (Cornell University) 2023-01-01
Coming Soon ...