M. Hayashida
- Astrophysics and Cosmic Phenomena
- Gamma-ray bursts and supernovae
- Dark Matter and Cosmic Phenomena
- Radio Astronomy Observations and Technology
- Astrophysical Phenomena and Observations
- Particle Detector Development and Performance
- Pulsars and Gravitational Waves Research
- Neutrino Physics Research
- Astronomical Observations and Instrumentation
- Particle physics theoretical and experimental studies
- Solar and Space Plasma Dynamics
- Astronomy and Astrophysical Research
- Galaxies: Formation, Evolution, Phenomena
- Particle Accelerators and Free-Electron Lasers
- Radiation Detection and Scintillator Technologies
- Cosmology and Gravitation Theories
- Computational Physics and Python Applications
- Geophysics and Gravity Measurements
- Adaptive optics and wavefront sensing
- Stellar, planetary, and galactic studies
- Astrophysics and Star Formation Studies
- Photocathodes and Microchannel Plates
- Calibration and Measurement Techniques
- Astro and Planetary Science
- Gyrotron and Vacuum Electronics Research
The University of Tokyo
2005-2020
Rikkyo University
2019-2020
Kyoto University
2011-2019
Tokai University
2015-2019
Konan University
2018-2019
Max Planck Institute for Physics
2006-2018
Tokushima University
2015-2018
Centro Brasileiro de Pesquisas Físicas
2017-2018
Osservatorio Astronomico di Padova
2018
Johannes Gutenberg University Mainz
2018
ABSTRACT We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), primary science instrument on Fermi Gamma-ray Space (Fermi) , during first 11 months phase mission, which began 2008 August 4. The First -LAT (1FGL) contains 1451 and characterized in 100 MeV to GeV range. Source detection was based average flux over month period, threshold likelihood Test Statistic is 25, corresponding significance just 4σ. 1FGL includes source location regions,...
Designed as a high-sensitivity gamma-ray observatory, the Fermi Large Area Telescope is also an electron detector with large acceptance exceeding 2 m;{2} sr at 300 GeV. Building on analysis, we have developed efficient detection strategy which provides sufficient background rejection for measurement of steeply falling spectrum up to 1 TeV. Our high precision data show that falls energy E-3.0 and does not exhibit prominent spectral features. Interpretations in terms conventional diffusive...
This catalog summarizes 117 high-confidence ⩾0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on Fermi satellite. Half are neutron stars discovered LAT through periodicity searches in and radio around unassociated source positions. The pulsars evenly divided into groups: millisecond pulsars, young radio-loud radio-quiet pulsars. We characterize pulse profiles energy spectra derive luminosities when distance information exists. Spectral...
The gamma-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with interstellar gas and radiation fields Milky Way. Observations these provide a tool to study cosmic-ray origin propagation, medium. We present measurements first 21 months Fermi-LAT mission compare models emission generated using GALPROP code. are fitted data incorporate astrophysical input for distribution sources, fields. To assess uncertainties associated input, grid created varying...
The second catalog of active galactic nuclei (AGNs) detected by the Fermi Large Area Telescope (LAT) in two years scientific operation is presented. LAT AGN (2LAC) includes 1017 γ-ray sources located at high Galactic latitudes (|b| > 10°) that are with a test statistic (TS) greater than 25 and associated statistically AGNs. However, some these affected analysis issues multiple Consequently, we define Clean Sample which 886 AGNs, comprising 395 BL Lacertae objects (BL Lac objects), 310...
We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because instrument does not have an onboard magnet, we distinguish two species by exploiting Earth's shadow, which is offset in opposite directions for charges due to magnetic field. estimate subtract proton background using different methods that produce consistent results. report electron-only spectrum, positron-only fraction between 20 GeV 200 GeV. confirm rises energy 20-100 range. The...
Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Burst Monitor and Large Area Telescope onboard Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades gammaray energy. In September 2008, observed exceptionally luminous GRB 080916C, with largest apparent release yet measured. high-energy gamma rays to start later persist longer than lower photons. A simple spectral form fits entire...
Satellite galaxies of the Milky Way are among most promising targets for dark matter searches in gamma rays. We present a search consisting weakly interacting massive particles, applying joint likelihood analysis to 10 satellite with 24 months data Fermi Large Area Telescope. No signal is detected. Including uncertainty distribution, robust upper limits placed on annihilation cross sections. The 95% confidence level range from about 10(-26) cm3 s(-1) at 5 GeV 5×10(-23) 1 TeV, depending final...
We report on the first Fermi Large Area Telescope (LAT) measurements of so-called "extragalactic" diffuse gamma-ray emission (EGB). This component is generally considered to have an isotropic or nearly distribution sky with diverse contributions discussed in literature. The derivation EGB based detailed modeling bright foreground Galactic emission, detected LAT sources, and solar emission. find spectrum consistent a power law differential spectral index gamma = 2.41 +/- 0.05 intensity I(>100...
The blazar Mrk 501 was observed at energies above 0.10 TeV with the MAGIC Telescope from 2005 May through July. high sensitivity of instrument enabled determination flux and spectrum source on a night-by-night basis. Throughout our observational campaign, found to vary by an order magnitude. Intranight variability flux-doubling times down 2 minutes during two most active nights, namely, June 30 July 9. These are fastest variations ever in 501. ~20 minute long flare 9 showed indication 4 ± 1...
The dwarf spheroidal satellite galaxies of the Milky Way are some most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack astrophysical backgrounds, widely considered be among promising targets for indirect detection via $\ensuremath{\gamma}$ rays. Here we report on $\ensuremath{\gamma}$-ray observations 25 based 4 years Fermi Large Area Telescope (LAT) data. None significantly detected in rays, present flux upper limits between 500 MeV GeV. We...
The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on Gamma-ray Space (Fermi) mission, is an imaging, wide field-of-view, high-energy γ-ray telescope, covering energy range from 20 MeV to more than 300 GeV. During first years of LAT team has gained considerable insight into in-flight performance instrument. Accordingly, we have updated analysis used reduce data for public release as well response functions (IRFs), description provided analysis. In this paper,...
We present the first catalog of active galactic nuclei (AGNs) detected by Large Area Telescope (LAT), corresponding to 11 months data collected in scientific operation mode. The First LAT AGN Catalog (1LAC) includes 671 γ-ray sources located at high Galactic latitudes (|b|>10°) that are with a test statistic greater than 25 and associated statistically AGNs. Some multiple AGNs, consequently, 709 comprising 300 BL Lacertae objects, 296 flat-spectrum radio quasars, 41 AGNs other types, 72...
The dramatic increase in the number of known gamma-ray pulsars since launch Fermi Gamma-ray Space Telescope (formerly GLAST) offers first opportunity to study a sizable population these high-energy objects. This catalog summarizes 46 high-confidence pulsed detections using six months data taken by Large Area (LAT), Fermi's main instrument. Sixteen previously unknown were discovered searching for signals at positions bright sources seen with LAT, or objects suspected be neutron stars based on...
The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at distance more than 5 billion light-years (a redshift 0.536). No quasar been observed previously in radiation, and this is also most object emitting above 50 gigaelectron volts. Because high-energy may be stopped by interacting with diffuse background light universe,...
ABSTRACT Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope ( ) began a sky survey August. The Large Area (LAT) on three months produced deeper and better resolved map of γ-ray than any previous space mission. We present here initial results for energies above 100 MeV 205 most significant (statistical significance greater ∼10σ) sources these data. These are best characterized localized point-like (i.e., spatially unresolved) early mission
We report on the observation of bright, long gamma-ray burst, GRB 090902B, by Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on-board Fermi observatory. This was one brightest GRBs to have been observed LAT, which detected several hundred photons during prompt phase. With a redshift z = 1.822, this burst is among most luminous Fermi. Time-resolved spectral analysis reveals significant power-law component in LAT data that distinct from usual Band model emission seen...
Microquasars are binary star systems with relativistic radio-emitting jets. They potential sources of cosmic rays and can be used to elucidate the physics We report detection variable gamma-ray emission above 100 gigaelectron volts from microquasar LS I 61 + 303. Six orbital cycles were recorded. Several detections occur at a similar phase, which suggests that is periodic. The strongest not observed when two stars closest one another, implying strong modulation or absorption processes.
We present the first joint analysis of gamma-ray data from MAGIC Cherenkov telescopes and Fermi Large Area Telescope (LAT) to search for signals dark matter annihilation in dwarf satellite galaxies. combine 158 hours Segue 1 observations with 6-year 15 galaxies by -LAT. obtain limits on cross-section particle masses between 10 GeV 100 TeV—the widest mass range ever explored a single analysis. These improve previously published -LAT results up factor two at certain masses. Our new inclusive...
We present the results of our analysis cosmic-ray electrons using about $8\ifmmode\times\else\texttimes\fi{}{10}^{6}$ electron candidates detected in first 12 months on-orbit by Fermi Large Area Telescope. This work extends previously published spectrum down to 7 GeV, giving a spectral range approximately 2.5 decades up 1 TeV. describe detail and its validation beam-test data. In addition, we measured via subset events selected for best energy resolution as cross-check on measurement full...
The first three months of sky-survey operation with the Fermi Gamma Ray Space Telescope (Fermi) Large Area (LAT) reveals 132 bright sources at |b|>10 deg test statistic greater than 100 (corresponding to about 10 sigma). Two methods, based on CGRaBS, CRATES and BZCat catalogs, indicate high-confidence associations 106 these known AGNs. This sample is referred as LAT Bright AGN Sample (LBAS). It contains two radio galaxies, namely Centaurus A NGC 1275, 104 blazars consisting 57 flat...
A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by Large Area Telescope on board Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 lasted approximately 16 days. second was September 2010 4 During these outbursts, flux nebula increased factors of four six, respectively. brevity implies that gamma rays were emitted via...
Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that rapidly forming massive stars are more luminous at energies compared to their quiescent relatives. Building upon those results, we examine a sample 69 dwarf, spiral, ultraluminous infrared photon 0.1–100 GeV using 3 years data collected Large Area Telescope (LAT) on Fermi Gamma-ray Space (Fermi). Measured fluxes from significantly detected sources flux upper limits for remaining used explore...