Martijn Otten

ORCID: 0000-0003-3409-3551
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Cardiomyopathy and Myosin Studies
  • Machine Learning in Healthcare
  • Sepsis Diagnosis and Treatment
  • Insurance, Mortality, Demography, Risk Management
  • Cardiac pacing and defibrillation studies
  • Respiratory Support and Mechanisms
  • Neurogenetic and Muscular Disorders Research
  • Intensive Care Unit Cognitive Disorders
  • Viral Infections and Immunology Research
  • Non-Invasive Vital Sign Monitoring
  • Heart Rate Variability and Autonomic Control
  • Biomedical Text Mining and Ontologies
  • Cardiovascular Function and Risk Factors
  • Muscle Physiology and Disorders
  • Electronic Health Records Systems
  • Cardiac Arrest and Resuscitation

Amsterdam University Medical Centers
2022-2024

Vrije Universiteit Amsterdam
2022-2024

University of Amsterdam
2023

Erasmus MC
2019-2022

With the advent of artificial intelligence, secondary use routinely collected medical data from electronic healthcare records (EHR) has become increasingly popular. However, different EHR systems typically names for same concepts. This obviously hampers scalable model development and subsequent clinical implementation decision support. Therefore, converting original parameter to a so-called ontology, standardized set predefined concepts, is necessary but time-consuming labor-intensive. We...

10.1016/j.ijmedinf.2023.105233 article EN cc-by International Journal of Medical Informatics 2023-09-22
Tariq A. Dam Luca F. Roggeveen Fuda van Diggelen Lucas M. Fleuren Ameet R. Jagesar and 95 more Martijn Otten Heder de Vries Diederik Gommers Olaf L. Cremer Rob J. Bosman Sander Rigter Evert‐Jan Wils Tim Frenzel Dave A. Dongelmans Remko de Jong Marco A. A. Peters Marlijn J. A. Kamps Dharmanand Ramnarain Ralph Nowitzky Fleur G. C. A. Nooteboom Wouter de Ruijter Louise C. Urlings‐Strop Ellen G. M. Smit D. Jannet Mehagnoul‐Schipper Tom Dormans Cornelis P. C. de Jager Stefaan H. A. Hendriks Sefanja Achterberg Evelien Oostdijk Auke C. Reidinga Barbara Festen‐Spanjer Gert B. Brunnekreef Alexander D. Cornet Walter van den Tempel Age D. Boelens Peter Koetsier Judith Lens Harald J. Faber A. Karakus Robert Entjes Paul de Jong Thijs C. D. Rettig M. Sesmu Arbous Sebastiaan J. J. Vonk Tomas Machado Willem E. Herter Harm‐Jan de Grooth Patrick Thoral Armand R. J. Girbes Mark Hoogendoorn Paul Elbers Julia Koeter Roger van Rietschote Merijn C. Reuland Laura van Manen Leon J. Montenij Jasper van Bommel Roy van den Berg Ellen van Geest Anisa Hana Bas van den Bogaard Peter Pickkers Pim van der Heiden Claudia van Gemeren Arend Jan Meinders Martha de Bruin Emma Rademaker Frits van Osch Martijn D. de Kruif Nicolas F. Schroten Klaas Sierk Arnold J. W. Fijen Jacomar J. M. van Koesveld Koen S. Simons Joost A. M. Labout Bart van de Gaauw Michaël Kuiper Albertus Beishuizen Dennis Geutjes Johan Lutisan Bart Grady Remko van den Akker Tom A. Rijpstra Wim Boersma Daniël Pretorius Menno Beukema Bram Simons A. A. Rijkeboer Marcel Ariës Niels C. Gritters van den Oever Martijn van Tellingen Annemieke Dijkstra Rutger van Raalte Ali el Hassouni David Romero Guzman Sandjai Bhulai Dagmar M. Ouweneel Ronald H. Driessen Jan M. Peppink G. J. Zijlstra

For mechanically ventilated critically ill COVID-19 patients, prone positioning has quickly become an important treatment strategy, however, is labor intensive and comes with potential adverse effects. Therefore, identifying which intubated patients will benefit may help allocate resources. From the multi-center Dutch Data Warehouse of ICU from 25 hospitals, we selected all 3619 episodes in 1142 invasively patients. We excluded longer than 24 h. Berlin ARDS criteria were not formally...

10.1186/s13613-022-01070-0 article EN cc-by Annals of Intensive Care 2022-10-20

Reinforcement Learning (RL) has recently found many applications in the healthcare domain thanks to its natural fit clinical decision-making and ability learn optimal decisions from observational data. A key challenge adopting RL-based solution practice, however, is inclusion of existing knowledge learning a suitable solution. Existing e.g. medical guidelines may improve safety solutions, produce better balance between short- long-term outcomes for patients increase trust adoption by...

10.1016/j.artmed.2023.102742 article EN cc-by Artificial Intelligence in Medicine 2023-12-01

Introduction: Benchmarking intensive care units for audit and feedback is frequently based on comparing actual mortality versus predicted mortality. Traditionally, prediction models rely a limited number of input variables significant manual data entry curation. Using automatically extracted electronic health record may be promising alternative. However, adequate comparative performance between these approaches currently lacking.Methods: The freely available highly granular AmsterdamUMCdb...

10.2139/ssrn.4486282 preprint EN 2023-01-01

Background: Implantable cardioverter-defibrillators (ICDs) are frequently used for primary and secondary prevention in patients with cardiomyopathies due to different etiologies. However, the long-term outcome noncompaction cardiomyopathy (NCCM) is still lacking. This study summarises of implantable cardioverter-defibrillator (ICD) therapy compared those dilated (DCM) or hypertrophic (HCM).Methods: Prospective data from our single-centre ICD registry were analyze interventions survival NCCM...

10.2139/ssrn.4129753 article EN SSRN Electronic Journal 2022-01-01
Coming Soon ...