Giovanni Ziarelli

ORCID: 0000-0003-0324-2067
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Regional Socio-Economic Development Trends
  • COVID-19, Geopolitics, Technology, Migration
  • Impact of AI and Big Data on Business and Society
  • COVID-19 epidemiological studies
  • Anomaly Detection Techniques and Applications
  • SARS-CoV-2 and COVID-19 Research
  • Influenza Virus Research Studies
  • COVID-19 Clinical Research Studies
  • Control Systems and Identification
  • Energy Load and Power Forecasting
  • Calcium Carbonate Crystallization and Inhibition
  • Fault Detection and Control Systems
  • Data-Driven Disease Surveillance
  • Bone Tissue Engineering Materials
  • COVID-19 Pandemic Impacts
  • Radiomics and Machine Learning in Medical Imaging
  • Model Reduction and Neural Networks
  • Advanced X-ray and CT Imaging
  • Cellular and Composite Structures
  • Bone health and osteoporosis research

University of Milan
2025

Politecnico di Milano
2021-2023

Johns Hopkins University
2023

Katharine Sherratt Hugo Gruson Rok Grah Helen Johnson Rene Niehus and 95 more Bastian Prasse Frank Sandmann Jannik Deuschel Daniel Wolffram Sam Abbott Alexander Ullrich Graham Gibson Evan L Ray Nicholas G Reich Daniel Sheldon Yijin Wang Nutcha Wattanachit Lijing Wang Ján Trnka Guillaume Obozinski Tao Sun Dorina Thanou Loïc Pottier Ekaterina Krymova Jan H. Meinke Maria Vittoria Barbarossa Neele Leithäuser Jan Möhring Johanna Schneider Jarosław Wlazło Jan Fuhrmann Berit Lange Isti Rodiah Prasith Baccam Heidi Gurung Steven Stage Bradley Suchoski Jozef Budzinski Robert Walraven Inmaculada Villanueva Vít Tuček Martin Šmíd Milan Zajíček Cesar Perez Alvarez Borja Reina Nikos I Bosse Sophie Meakin Lauren Castro Geoffrey Fairchild Isaac Michaud Dave Osthus Pierfrancesco Alaimo Di Loro Antonello Maruotti Veronika Eclerová Andrea Kraus David Kraus Lenka Přibylová Bertsimas Dimitris Michael Lingzhi Li Soni Saksham Jonas Dehning Sebastian Mohr Viola Priesemann Grzegorz Redlarski Benjamı́n Béjar Giovanni Ardenghi Nicola Parolini Giovanni Ziarelli Wolfgang Böck Stefan Heyder Thomas Hotz David E Singh Miguel Guzmán-Merino Jose L Aznarte David Moriña Sergio Alonso Enric Àlvarez Daniel López Clara Prats Jan Pablo Burgard Arne Rodloff Tom Zimmermann Alexander Kuhlmann Janez Žibert Fulvia Pennoni Fabio Divino Martí Català Gianfranco Lovison Paolo Giudici Barbara Tarantino Francesco Bartolucci Giovanna Jona Lasinio Marco Mingione Alessio Farcomeni Ajitesh Srivastava Pablo Montero‐Manso Aniruddha Adiga Benjamin Hurt Bryan Lewis Madhav Marathe

Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields recent insights epidemiology, one maximise the predictive performance such if multiple models are combined into an ensemble. Here, we report ensembles predicting COVID-19 cases deaths across Europe between 08 March 2021 07 2022.

10.7554/elife.81916 article EN public-domain eLife 2023-04-21

We propose a novel epidemiological model, referred to as SEIHRDV, for the numerical simulation of COVID-19 epidemic, which we validate using data from Italy starting in September 2020. SEIHRDV features following compartments: Susceptible (S), Exposed (E), Infectious (I), Healing (H), Recovered (R), Deceased (D) and Vaccinated (V). The model is age-stratified, it considers population split into 15 age groups. Moreover, takes account 7 different contexts exposition infection (family, home,...

10.48550/arxiv.2501.04148 preprint EN arXiv (Cornell University) 2025-01-07

We propose a novel epidemiological model, referred to as SEIHRDV, for the numerical simulation of COVID-19 epidemic, validated using data from Italy starting in September 2020. SEIHRDV includes following compartments: Susceptible (S), Exposed (E), Infectious (I), Healing (H), Recovered (R), Deceased (D), and Vaccinated (V). The model is age-stratified, with population divided into 15 age groups, it considers seven different contexts exposure infection (family, home, school, work, transport,...

10.3390/math13050788 article EN cc-by Mathematics 2025-02-27

In the context of SARS-CoV-2 pandemic, mathematical modelling has played a fundamental role for making forecasts, simulating scenarios and evaluating impact preventive political, social pharmaceutical measures. Optimal control theory represents useful tool to plan vaccination campaign aimed at eradicating pandemic as fast possible. The aim this work is explore optimal prioritisation order planning campaigns able achieve specific goals, reduction amount infected, deceased hospitalized in...

10.1016/j.idm.2023.05.012 article EN cc-by-nc-nd Infectious Disease Modelling 2023-06-05
Katharine Sherratt Hugo Gruson Rok Grah Hillary Johnson Rene Niehus and 95 more Bastian Prasse F. Sandman Jannik Deuschel Daniel Wolffram Sam Abbott Alexander Ullrich Graham Gibson EL. Ray NG. Reich Daniel Sheldon Yijin Wang Nutcha Wattanachit L. Wang Ján Trnka Guillaume Obozinski Tao Sun Dorina Thanou Laurence Pottier Ekaterina Krymova Maria Vittoria Barbarossa Neele Leithäuser Jan Möhring Johanna Schneider Jarosław Wlazło Jan Fuhrmann Berit Lange Isti Rodiah Prasith Baccam Heidi Gurung Steven A. Stage Brad T. Suchoski Jozef Budzinski Robert Walraven Inmaculada Villanueva Vít Tuček Martin Šmíd Milan Zajíček C. Pérez Álvarez Borja Reina Nikos I Bosse Sophie Meakin Pierfrancesco Alaimo Di Loro Antonello Maruotti Veronika Eclerová Andrea Kraus David Kraus Lenka Přibylová Babalis Dimitris ML. Li Soni Saksham Jonas Dehning Sebastian Mohr Viola Priesemann Grzegorz Redlarski Benjamı́n Béjar Giovanni Ardenghi Nicola Parolini Giovanni Ziarelli Wolfgang Böck Stefan Heyder Thomas Hotz David E Singh Miguel Guzmán-Merino Jose L Aznarte David Moriña Sergio Alonso E. Álvarez Daniel López Clara Prats JP. Burgard Arne Rodloff Thomas Zimmermann Alexander Kuhlmann Janez Žibert Fulvia Pennoni Fabio Divino Martí Català Gianfranco Lovison Paolo Giudici Barbara Tarantino Francesco Bartolucci Giovanna Jona Lasinio Marco Mingione Alessio Farcomeni Ajitesh Srivastava Pablo Montero‐Manso Aniruddha Adiga Benjamin Hurt Bryan Lewis Madhav Marathe Przemyslaw Porebski Srinivasan Venkatramanan Rafał Bartczuk Filip Dreger Anna Gambin

Abstract Background Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields recent insights epidemiology, one maximise the predictive performance such if multiple models are combined into an ensemble. Here we report ensembles predicting COVID-19 cases deaths across Europe between 08 March 2021 07 2022. Methods We used open-source tools develop a public European Forecast Hub. invited groups...

10.1101/2022.06.16.22276024 preprint EN cc-by medRxiv (Cold Spring Harbor Laboratory) 2022-06-16

The solutions provided through natural evolution of living creatures serve as an ingenious source inspiration for many technological and applicative fields. Along these lines, bone-inspired concepts lead to fascinating advances in product design, architecture garments, thanks the bone’s exceptional combination strength, toughness lightness. Structural applications are inspired by ability resist fracture under a large spectrum forces, while high surface area pore connectivity bone present...

10.3390/ma14154226 article EN Materials 2021-07-28

Since infectious pathogens start spreading into a susceptible population, mathematical models can provide policy makers with reliable forecasts and scenario analyses, which be concretely implemented or solely consulted. In these complex epidemiological scenarios, machine learning architectures play an important role, since they directly reconstruct data-driven circumventing the specific modelling choices parameter calibration, typical of classical compartmental models. this work, we discuss...

10.48550/arxiv.2404.11130 preprint EN arXiv (Cornell University) 2024-04-17

In this work, we aim to formalize a novel scientific machine learning framework reconstruct the hidden dynamics of transmission rate, whose inaccurate extrapolation can significantly impair quality epidemic forecasts, by incorporating influence exogenous variables (such as environmental conditions and strain-specific characteristics). We propose an hybrid model that blends data-driven layer with physics-based one. The is based on neural ordinary differential equation learns conditioned...

10.48550/arxiv.2410.11545 preprint EN arXiv (Cornell University) 2024-10-15
Coming Soon ...