Tirtha Chanda

ORCID: 0009-0009-0649-9301
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Cutaneous Melanoma Detection and Management
  • Explainable Artificial Intelligence (XAI)
  • AI in cancer detection
  • Artificial Intelligence in Healthcare and Education
  • Machine Learning in Healthcare
  • Topic Modeling

German Cancer Research Center
2024-2025

Heidelberg University
2024-2025

Tirtha Chanda Katja Hauser Sarah Hobelsberger Tabea-Clara Bucher Carina Nogueira Garcia and 95 more Christoph Wies Harald Kittler Philipp Tschandl Cristián Navarrete‐Dechent Sebastián Podlipnik Emmanouil Chousakos Iva Crnaric Jovana Majstorovic Linda Alhajwan Tanya Foreman Sandra Peternel Sergei Sarap İrem Özdemir Raymond L. Barnhill Mar Llamas‐Velasco Gabriela Poch Sören Korsing Wiebke Sondermann Frank Friedrich Gellrich Markus V. Heppt Michael Erdmann Sebastian Haferkamp Konstantin Drexler Matthias Goebeler Bastian Schilling Jochen Utikal Kamran Ghoreschi Stefan Fröhling Eva Krieghoff‐Henning Alexander Salava Alexander Thiem Alexandris Dimitrios Amr Mohammad Ammar Ana Sanader Vučemilović Andrea Miyuki Yoshimura Andzelka Ilieva Anja Gesierich Antonia Reimer Antonios G.A. Kolios Arturs Kaļva Arzu Ferhatosmanoğlu Aude Beyens Claudia Pföhler Dilara Ilhan Erdil Dobrila Jovanovic Emöke Rácz Falk G. Bechara Federico Vaccaro Florentia Dimitriou Günel Rasulova Hülya Cenk Irem Yanatma Isabel Kolm Isabelle Hoorens Iskra Petrovska Sheshova Ivana Jocic Jana Knuever Janik Fleißner Janis Thamm Johan Dahlberg Juan José Lluch‐Galcerá Juan Sebastián Andreani Figueroa Julia Holzgruber Julia Welzel Katerina Damevska Kristine Elisabeth Mayer Lara Valeska Maul Laura Garzona-Navas Laura Isabell Bley Laurenz Schmitt Lena Reipen Lidia Shafik Lidija Petrovska Linda Golle Luise Jopen Magda Gogilidze Maria Rosa Burg Martha Alejandra Morales‐Sánchez Martyna Sławińska Miriam Mengoni Miroslav Dragolov N. Iglesias-Pena Nina Booken Nkechi Anne Enechukwu Oana‐Diana Persa Olumayowa Abimbola Oninla Panagiota Theofilogiannakou Paula Kage Roque Rafael Oliveira Neto Rosario Peralta Rym Afiouni Sandra Schuh Saskia Schnabl-Scheu Seçil Vural Sharon Hudson

10.1038/s41467-023-43095-4 article EN cc-by Nature Communications 2024-01-15

Artificial intelligence (AI) systems have substantially improved dermatologists' diagnostic accuracy for melanoma, with explainable AI (XAI) further enhancing clinicians' confidence and trust in AI-driven decisions. Despite these advancements, there remains a critical need objective evaluation of how dermatologists engage both XAI tools. In this study, 76 participated reader diagnosing 16 dermoscopic images melanomas nevi using an system that provides detailed, domain-specific explanations....

10.48550/arxiv.2409.13476 preprint EN arXiv (Cornell University) 2024-09-20

The aggressiveness of prostate cancer, the most common cancer in men worldwide, is primarily assessed based on histopathological data using Gleason scoring system. While artificial intelligence (AI) has shown promise accurately predicting scores, these predictions often lack inherent explainability, potentially leading to distrust human-machine interactions. To address this issue, we introduce a novel dataset 1,015 tissue microarray core images, annotated by an international group 54...

10.48550/arxiv.2410.15012 preprint EN arXiv (Cornell University) 2024-10-19

Although artificial intelligence (AI) systems have been shown to improve the accuracy of initial melanoma diagnosis, lack transparency in how these identify poses severe obstacles user acceptance. Explainable (XAI) methods can help increase transparency, but most XAI are unable produce precisely located domain-specific explanations, making explanations difficult interpret. Moreover, impact on dermatologists has not yet evaluated. Extending two existing classifiers, we developed an system...

10.48550/arxiv.2303.12806 preprint EN public-domain arXiv (Cornell University) 2023-01-01
Coming Soon ...